Do flares in the early X-ray afterglow really imply a late activity of the central engine?

R. Mochkovitch, with A. Beloborodov, F. Daigne, R. Hascoët, Z.L. Uhm

Early afterglow Swift surprises: initial steep decay, plateau and **flares** ...

Basic properties of flares:

- from 100 s to a few 10⁵ s, superimposed to underlying AG light curve
- shape and spectral evolution comparable to that of prompt pulses
- except that $\Delta t/t \sim 0.1 0.3 \rightarrow$ late flares last longer

(Burrows, Falcone, Chincarini et al, 2007)

Flares: what they are not

- refreshed shocks (no increase in AG level after flare)
- clumps in the CSM (Nakar & Granot, 2007)

Most flares are incompatible with a FS origin

Late activity of the central engine?

May be, but:

- some very late flares (even in short bursts)
- implies a very specific temporal behavior of the central engine

An alternative to late activity:

Flares from the sequence: IS + RS?

Structuration of the ejecta by IS followed by « tomography » by the RS

What happens during the internal shock phase?

 Γ is redistributed into the ejecta with slower material decelerating faster one until only a few dense shells remain with ordered Γ values (decreasing from front to tail)

Shell 1: Γ = 200 ; 40% of E_{TOT} Shell 2: Γ = 140 ; 30% of E_{TOT} Shell 3: Γ = 50 ; 15% of E_{TOT} ~ 15% unshocked When this structured ejecta is decelerated by the surrounding medium the RS produces "accidents" when Γ has decreased to respectively 140 and 50

The accidents in the light curve have:

$$\Delta t/t \sim const (good)$$

but with const $\sim 1 (bad)$

If this defect can be corrected

 \rightarrow the « accidents » become attractive candidates to make the flares

Then, is it possible to reduce $\Delta t/t$ from 1 to 0.1 – 0.3 ?

May be ... if the radiation is anisotropic in the frame of the emitting shell (Beloborodov, Daigne, Mochkovitch & Uhm, 2010)

Shell rest frame	Observer frame	Decay (bolometric)
isotropic	1/Γ	t-3
anisotropic	1/kΓ (k>1)	$t^{-\alpha}$ ($\alpha > 3$)

Rise time looks OK but may be artificially steep (requires true hydro)

Anisotropy sharpens the flares

Should one expect a correlation between the prompt light curve and the flaring behavior?

Complex bursts / afterglow with no flare → early flares mixed with prompt emission ? flares in slow cooling regime?

Simple pulse (FRED) burst / afterglow with flares (less frequent) → « hidden » pulses ?

Conclusions

Accidents in the early afterglow light curve are expected if internal shocks previously occurred in the ejecta

But basic model predicts $\Delta t/t \sim 1$

- \rightarrow exploring some ways to decrease this to 0.1 0.3
- anisotropy (decay)
- full hydro (rise)

Possible test of the proposal by comparing BAT and XRT light curves