Prompt Emission Properties of Swift GRBs

T. Sakamoto (CRESST/UMBC/GSFC) On behalf of Swift/BAT team

101029

Name: Yuiko Sakamoto Gender: Girl DOB: Oct 29, 2010 8:54AM Weight: 5 lbs 8 oz (2490g) Length: 19" (48cm)

Content

Highlight on Swift's discovery on 2010 BAT2 GRB catalog – Duration distribution (short GRBs) – E_{peak} distribution - Line of Death Problem - Extra power-law component in the BAT data? Pre-/post-burst hard X-ray emission

Discovery on 2010

2010. 11. 01.

2010 Annapolis GRB Conference

Swift

BAT2 GRB Catalog

(Submitted to ApJS, under the revision...)

BAT2 GRB Catalog

- 476 GRBs (from GRB 041219 to GRB 091221)
 including 25 GRBs found in ground processing
- 3323 time-resolved spectra
- 146 known-z GRBs

2010. 11. 01.

Discussion: Duration

Discussion: Short on S-GRBs in BAT

2010. 11. 01.

2010 Annapolis GRB Conference

Swift

wift

Discussion: E_{peak}

(1) E_{peak} distribution

- Broad single E_{peak} distribution Open questions:

- Where is a lower/upper limit of E_{peak}?

(2) What is E_{peak}? E_{peak}: Peak of the Synchrotron spectrum

E_{peak} : Inverse Compton peak?

Swit

Broad-band observation (from radio to gamma-ray) of the prompt emission is a key!

2010. 11. 01.

Discussion: E_{peak}

(1) E_{peak} distribution

(2) What is E_{peak}? E_{peak}: Peak of the Synchrotron spectrum

Open questions:

- What is the intrinsic distribution of E_{peak}?

E_{peak} : Inverse Compton peak?

Swit

Broad-band observation (from radio to gamma-ray) of the prompt emission is a key!

2010. 11. 01.

Line of Death Problem

 $N(\gamma_e) \ d\gamma_e \sim \gamma_e^{-p} \ d\gamma_e \ (\gamma_e \ge \gamma_m)$

 v_a: self-absorption frequency
 v_c: cooling frequency
 v_m: synchrotron frequency of the minimum-energy electrons

BATSE time-resolved spectra (Preece et al. 1998)

Examples of LoD intervals

>1.60

>3.2o

Annapolis GKB Conference

Swift

Examples of LoD intervals

olis (TKB Conterence

>1.60

>3.2o

Extra power-law component in the BAT spectra?

Fermi GRB 090902B (Abdo et al. 2009)

 vF_v spectrum of region b

2010. 11. 01.

Extra power-law component in the BAT spectra?

Reduced χ^2 distribution

BAT spectral simulation of region b

- 30 deg off-axis BAT energy response
- including real background data
- xspec fakeit 10,000 simulations
- fit by PL and CPL

Example of BAT simulated spectrum of reg b

p_{builded} p_{b

- 99.97% of the simulated spectra $\chi^2_{\nu} > 1.7$ - 2/3284 (0.06%) of the BAT time-resolved spectra $\chi^2_{\nu} > 1.7$

BAT hasn't seen such a spectral feature...

2010. 11. 01.

Summary

• Duration: long GRB $T_{90} \sim 70$ s → longer duration at softer energy band : lack of short GRBs → localizing bright end of BATSE short GRBs • E_{peak}: Strong instrumental selection bias \rightarrow broad-band observation of the prompt emission • Line of Death: ~1% (PL) and ~10% (CPL) violate LoD limit \rightarrow Either bright or rising part of the peak • Extra power-law component: No

GRB 100316D/SN 2010bh: SN-GRB Association

Prompt emission

(Starling et al. 2010)

c.f. GRB 060218

(Campana et al. 2006)

c.f. GRB 030329/SN 2003dh

(Vanderspek et al. 2004)

Optical spectrum

- z = 0.0593
- Type Ic
- v ~ 26,000 km/s@21 days (2x SN 1998bw)
- No evidence of helium
- Low metallicity host
- (Chornock et al. 2010)

2010. 11. 01.

New SGR 1833-0832

BAT light curve

X-ray pulse profile (XRT)

March 19, 2010 18:34:50.78 UT
BAT Position (18^h33^m46^s, -8^d32^m13^s) (1, b) = (23.325^d, 0.009^d)

(Gogus et al. 2010)

- BAT spectrum fit well with BB (kT=10 keV) instead of PL
- Very faint X-ray source by XRT (Issue GCN Circ. "Possible new SGR")

Pulsating new X-ray source: P=7.56 s, Pdot = 4 x 10⁻¹² s/s (XRT and RXTE)
Sub-arcsec position by Chandra
No burst detection by Fermi/GBM; four weak bursts detected by RXTE/PCA
No obvious IR (UKIRT) and radio (WSRT) counterpart
B = 1.8 x 10¹⁴ G (lower end)

Interpretation of BAT PL index

(1) $E_{BAT} < E_{peak}$ (2) $E_{BAT} < E_{peak} < E_{BAT}$ (3) $E_{peak} > E_{BAT}$

Energy

Swift

- BAT PL photon index does inform about E_{peak} . - ~75 % of BAT GRBs: E_{peak} is very likely located inside the BAT energy range (Sakamoto et al. 2009).

2010. 11. 01.

Anti-Sun Pointing Matters!

Redshift determination rate by different Sun hour angle (GRB_{Sun}) of GRBs

 $GRB_{Sun} > 9 hr: 45\%$ 6 hr < $GRB_{Sun} \le 9 hr: 47\%$ 3 hr < $GRB_{Sun} \le 6 hr: 34\%$ 0 hr < $GRB_{Sun} \le 3 hr: 10\%$

Anti-Sun pointing has a strong effect in redshift determination of Swift GRBs

2010. 11. 01.

