

GRBs, UHECRs, and the IGMF

GRB 2010 Conference Annapolis, MD November 1-4, 2010

Chuck Dermer

United States Naval Research Laboratory Washington, DC USA charles.dermer@nrl.navy.mil

Critical review of the hypothesis that GRBs are the sources of the UHECRs

Dermer

4 Nov 2010

Acceptable UHECR source candidates

- 2. Mechanism to accelerate to ultra-high energies acceleration region smaller than Larmor radius (Hillas condition)
- 3. Adequate energy production rate within GZK volume
- 4. Sources within GZK radius
- 5. UHECRs can escape from acceleration region

Electromagnetic signatures of UHECRs

The goal of identifying hadronic signatures in the high-energy spectra of GRBs is ambiguous, and leptonic emission models are energetically favored.

Neutrino signatures of UHECRs in GRBs Waiting...

Intergalactic Magnetic Field Constraints from Auger Observations

Dermer

2. Mechanism to accelerate to ultra-high energies

Requirement to accelerate to ultra-high energies by Fermi processes:

$$\Rightarrow E_{\max} \approx \left(\frac{Ze}{\Gamma}\right) \sqrt{\frac{2L}{c}} \times Factor (<1)$$

$$\Rightarrow L_{\gamma} > \frac{3 \times 10^{45}}{Z^2} \Gamma^2 \left(\frac{E}{10^{20} eV}\right) erg \ s^{-1}$$

Dermer

$\mathbf{L} - \Gamma$ diagram

- Bulk Lorentz factor Γ from γγ opacity arguments
- Sources with jet Lorentz factor Γ must have jet power L exceeding heavy solid and dot-dashed curves to accelerate p and Fe respectively, to E = 10²⁰ eV
- □ GRBs can easily accelerate p and Fe to >10²⁰ eV

3. Energy Production Rate within GZK Volume

Luminosity Density from Long GRB Observations

(Nonthermal) Luminosity density ℓ (energy/ time/ volume)

0.6 (Wanderman & Piran 2010; 1 keV – 1 MeV)

□ Mean GRB flux ϕ

$$\phi(>20 \, keV) \approx 0.0075 \, erg \, cm^{-2} \, yr^{-1}$$

BATSE data for long GRBs

$$\Rightarrow \ell \approx \frac{H_0}{c} \phi \approx 10^{43} \, erg \, Mpc^{-3} \, yr^{-1}$$

□ GRB flux ϕ at Fermi/LAT energies only

$$\Rightarrow \ell pprox 10^{42} \ erg \ Mpc^{-3} \ yr^{-1}$$
 (Eichler et al. 2010)

Luminosity Density of UHECR Candidates from Fermi Data

GRBs have adequate energy production rate only if baryon loading large (Fermi data favors ion acceleration by BL Lacs/FR1 radio galaxies)

Dermer

4. Sources within the GZK Radius

- □ Local GRB rate density \approx (0.5 x 75) Gpc⁻³ yr⁻¹ (Guetta et al. 2005) \approx 10 Gpc⁻³ yr⁻¹ (Le & Dermer 2007)
 - ∴ GRB rate within GZK radius (≈100 Mpc): ~0.1 yr⁻¹ GRB rate within GZK radius with jets pointing towards us: ~10⁻³ θ_{-1}^2 yr⁻¹

□ Deflection of 10²⁰ E₂₀ eV particles by
$$\theta_{dfl} \cong \frac{d}{2r_L \sqrt{N_{inv}}} < 10^{-6} \frac{ZB_{-15} d_{100}}{E_{20}}$$

in an Intergalactic Magnetic Field (IGMF) $B_{IGMF} = 10^{-15}B_{-15}$ G

$$\Box \quad \text{Arrival times extended by} \quad \Delta t \approx \frac{d}{6c} \theta_{dfl}^2 \approx 400 \frac{Z^2 B_{-15}^2 d_{100}^3}{E_{20}^2 N_{inv}} s$$

To extend arrival times over ~10⁵ yr, require $B_{-15} > 10^5 \frac{E_{20} \sqrt{N_{inv}}}{Zd_{100}^{3/2}}$

For UHECR/GRB hypothesis to be viable, B_{IGMF}(nG) > 0.1/Z

Dermer

Implications of Weak IGMF

- □ Model of UHECRs from GRBs not viable for weak IGMF
- Claims of Neronov & Vovk (2010), Tavecchio et al. (2010a,b) based on assumption about the constancy of TeV flux of blazars

(paper with Cavadini, Razzaque, Finke, Lott, in prepartion)

- □ Ando & Kusenko (2010) parameters contrary to spectral model
- ∴ if B_{IGMF}(G) > 0.1 nG/Z, GRB model of UHECR origin remains viable B_{IGMF}(G) < few nG/Z for clustering</p>

Fine tuning?

5. UHECR escape from acceleration region

Depends on composition

1. If p-dominated, claimed by HiRes

Neutral beam model (Atoyan & Dermer 2003)

2. If Fe-dominated, claimed by Auger (at $\approx 4 \times 10^{19} \text{ eV}$)

Impulsive production makes cosmic ray shock

Escape from source region without photodisintegration

Evidence favors (radio-loud) AGN hypothesis for UHECR origin