Analytic Modeling of the Propagation of Jets Inside Collapsars

Omer Bromberg
Ehud Nakar
Tsvi Piran
Re'em Sari

Racah Institute of Physics
The Hebrew University

Numerical modeling

Numerical modeling

- Jets do break through.
- A Cocoon is created.
- Extremely narrow jets.
- Jet heads are sub-to-trans relativistic

Numerical modeling

- Jets do break through.
- A Cocoon is created.
- Extremely narrow jets.
- Jet heads are sub-to-trans relativistic

How does changing the properties of the jet and the star affect the evolution?

Mizuta \& Aloy 09

Morsony et al., 07

Analytic Study

- Several analytic works were done in the past, (e.g. Meszaros \& Waxman 01, Matzner 03, Lazzati \& Begelman 05).
- But though the importance of collimation shocks in the jet was mentioned it was not fully modeled.
- This work extends previous work and performs for the fist time a self consistent calculation of the jet+cocoon evolution inside the star.

The Jet-Cocoon Model

Initial conditions:

luminosity - L_{j}
Injection angle $-\theta_{\text {inj }}$ Stellar structure

Comparison with simulations

HE16N t=1.0 s

Mizuta \& Aloy 09 $\mathrm{R} / 10^{9} \mathrm{~cm}$

Analytic estimations - low β_{h}

$$
\begin{gathered}
t_{b}=30 \mathrm{~s} \cdot \mathrm{~L}_{47}^{-1 / 3} \theta_{10^{\circ}}^{4 / 3} \mathrm{R}_{11}^{2 / 3} \mathrm{M}_{15 \odot}^{1 / 3} \\
\beta_{h}\left(t_{b}\right)=0.1 \cdot \mathrm{~L}_{47}^{1 / 3} \theta_{10^{\circ}}^{4 / 3} \mathrm{R}_{11}^{1 / 3} \mathrm{M}_{15 \odot}^{-1 / 3} \\
\theta_{j}\left(t_{b}\right)=0.1^{\circ} \cdot \mathrm{L}_{47}^{1 / 6} \theta_{10^{\circ}}^{4 / 3} \mathrm{R}_{11}^{7 / 6} \mathrm{M}_{15 \odot}^{-1 / 6}
\end{gathered}
$$

$$
\Gamma_{j}\left(t_{b}\right)=\theta_{\mathrm{inj}}^{-1}
$$

$$
E_{i s o, \text { min }}=4 \cdot 10^{51} t_{10 \sec }^{-2} \theta_{10}^{2} R_{11}^{2} M_{150} \quad \operatorname{ergs}
$$

* The engine must be active until the jet head breaks out.

Applications I:

- Low luminosity GRBs:
- wide opening angle $\theta>10^{\circ}$
- $\mathrm{E}_{\text {iso }} \sim 10^{48}-10^{49} \mathrm{ergs}$
- $\mathrm{T}_{90} \sim 10-1000 \mathrm{sec}$

$$
E_{i s o, \min }=10^{48} t_{10^{3} \sec }^{-2} \theta_{20^{\circ}}^{2} R_{11}^{2} M_{15 \odot} \text { ergs }
$$

- Only the longer bursts may originate from jets which break out of the star.
- Shorter duration bursts result in failed jets.

Applications II:

- A weak jet which fail to break ("failed GRB") leads to a hot spot on the stellar envelope.
- Predicted cocoon temperature: $K T=4 E_{i s o, 48}^{1 / 8} R_{11}^{-2 / 3} M_{150}^{1 / 24} \quad \mathrm{KeV}$
- Example SN 2008D (Mazzali et al., 2008) usually interpreted as a "shock break out".

Morsony et al., 04

Applications Ia:

- Jet break from first generation stars:

$$
E_{i s o, \min }=3 \cdot 10^{53}\left(\frac{t}{30 \mathrm{sec}}\right)^{-2} \theta_{10^{\circ}}^{2} R_{12}^{2} M_{10 \circledast} \quad \operatorname{ergs}
$$

* The engine must be active until the jet breaks out, otherwise all the energy will be dissipated into the cocoon.

Applications III:

- Post breakout fireball evolution:
- At breakout hot jet: expands to $\boldsymbol{\theta}_{0}=\Gamma_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{b}}\right)^{-1}=\boldsymbol{\theta}_{\text {inj }}$
- Shifted fireball with initial parameters:
$\mathrm{R}_{0} \sim 10^{9} \mathrm{~cm}, \Gamma_{0}=\Gamma_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{b}}\right)=\boldsymbol{\theta}_{\mathrm{inj}}{ }^{-1}$.
- Jet in the star continue to expand: initial conditions evolve.
- Closer photosphere

Applications IV

- Generation of $>100 \mathrm{GeV}$ neutrinos inside the star requires very large radii or extreme fine tuning of the parameters.

Summary:

- The analytic model can reconstruct the jet-cocoon properties as it propagates in the star.
- Collimation shocks at the base are important.
- Shocks are radiation mediated (Poster 2.02).
- Need large stars or fine tuning to generate TeV neutrinos.
- Minimal break energy: $E_{\text {min }}=4 \cdot 10^{51}\left(\theta_{10} / t_{10 \text { sec }}\right)^{2}$ ergs
- Low energy GRBs with $\mathrm{T}_{90} \sim 10$ might be "failed GRBs", or have different progenitor.
- Post breakout dynamics: evolving initial params.
- Many other implications - work in progress.

