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How does changing the properties of the 

jet and the star affect the evolution?



Analytic Study

• Several analytic works were done in the past, 

(e.g. Meszaros & Waxman 01, Matzner 03, 

Lazzati & Begelman 05).  

• But though the importance of collimation 

shocks in the jet was mentioned it was not 

fully modeled.

• This work extends previous work and performs 

for the fist time a self consistent calculation of 

the jet+cocoon evolution inside the star.
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The Jet-Cocoon Model
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vinson 07; 09
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Collimation

Shock –

Radiation 

mediated

(Poster 2.02)
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Initial conditions:

luminosity – Lj

Injection angle - θinj

Stellar structure

Unknowns:

Cocoon pressure 

Cocoon size

Head velocity

Jet cross-section

Jet Lorentz factor



Comparison with simulations
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Analytic estimations – low βh
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* The engine must be active until the jet 

head breaks out.



Applications I:

• Low luminosity GRBs: 

– wide opening angle θ>10º 

– Eiso~1048-1049 ergs

– T90~ 10-1000 sec 

• Only the longer bursts may originate from  
jets which break out of the star.

• Shorter duration bursts result in failed jets.
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Applications II:

• A weak jet which fail to break (“failed GRB”) 

leads to a hot spot on the stellar envelope.

• Predicted cocoon temperature:

KeV

• Example SN 2008D (Mazzali et al., 2008) 

usually interpreted as a “shock break out”.
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Applications Ia:

• Jet break from first generation stars:

* The engine must be active until the jet breaks 
out, otherwise all the energy will be dissipated 
into the cocoon.
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Applications III:

• Post breakout fireball evolution:

– At breakout hot jet: expands to θ0 = Γj(tb)-1 = θinj

– Shifted fireball with initial parameters:

R0~109cm, Γ0= Γj(tb)= θinj
-1.

– Jet in the star continue to expand: initial conditions 

evolve.

– Closer photosphere
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Applications IV

• Generation of > 100 GeV neutrinos inside the 

star requires very large radii or extreme fine 

tuning of the parameters.
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Summary:
• The analytic model can reconstruct the jet-cocoon 

properties as it propagates in the star.

• Collimation shocks at the base are important.

• Shocks are radiation mediated (Poster 2.02).

• Need large stars or fine tuning to generate TeV
neutrinos.

• Minimal break energy:

• Low energy GRBs with T90~ 10 might be    
“failed GRBs”, or have different progenitor.

• Post breakout dynamics: evolving initial params.

• Many other implications – work in progress.
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