Numerical Simulations of GRB Afterglow Dynamics

Andrew MacFadyen (NYU)

w/ H. van Eerten,W. Zhang \& J. Zrake (NYU)

Outline

2D High Resolution AG Jets: Broadband Light Curves

Plasma Dynamics with accurate PIC code: $\Gamma=2$

Relativistic MHD Turbulence

Spherical Attractor

A. MacFadyen (NYU) IAS, May 13, 2010

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20IO, Annapolis, MD

BlandfordMcKee

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB2OIO, Annapolis, MD

A. MacFadyen (NYU) Nov 2,2010 GRB20IO, Annapolis, MD

SLOW SPREADING

Whole Sky ${ }_{\text {Y }}$.

A. MacFadyen (NYU) Nov 2,2010 GRB20IO, Annapolis, MD

On Axis Light Curves

Off-Axis Light Curves van Eerten, Zhang \& AM (ApJ, 20I0)

Poster 3.05

http://cosmo.nyu.edu/ afterglowlibrary/

Supported by NASA 09-ATP-0190
A. MacFadyen (NYU) Nov 2, 2010 GRB20I0, Annapolis, MD

Estimated Jet Break Time for Off-Axis Observer

$$
t_{j}=3.5(1+z) E_{i s o, 53}^{1 / 3} n_{1}^{-1 / 3}\left(\frac{\theta_{0}+\theta_{o b s}}{0.2}\right)^{8 / 3} \text { days }
$$

A. MacFadyen (NYU)

See Poster 3.06
A. MacFadyen (NYU) Nov 2,20I0 GRB20I0, Annapolis, MD

On Axis

A. MacFadyen (NYU) Nov 2,20I0 GRB20IO, Annapolis, MD

On Edge

A. MacFadyen (NYU) Nov 2, 2010 GRB20I0, Annapolis, MD

See Poster 3.06
A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20IO, Annapolis, MD

Shock

Zhang, AM (in prep, 2010)

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20IO, Annapolis, MD

$\Gamma=15$

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20I0, Annapolis, MD
$\Gamma=2$

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB2OIO, Annapolis, MD

A. MacFadyen (NYU) Nov 2,20I0 GRB20I0, Annapolis, MD

A. MacFadyen (NYU) Nov 2,20I0 GRB20IO, Annapolis, MD

$\varepsilon в=0.005$

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20IO, Annapolis, MD

Driven Turbulence at $512^{3} P \equiv 1 / 3 \rho$

A. MacFadyen (NYU) Nov 2,2010 GRB20IO, Annapolis, MD

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20IO, Annapolis, MD

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB2OIO, Annapolis, MD

Driven Turbulence at $512^{3} P \equiv 1 / 3 \rho$

A. MacFadyen (NYU) Nov 2,20I0 GRB20IO, Annapolis, MD

$$
T^{\mu \nu}=(P+\rho) u^{\mu} u^{\nu}+P g^{\mu \nu}
$$

Smooth \& Spherical

Jet \& Clumps

Ultra-relativistic Vorticity and Shock Dynamics

Goodman \& MacFadyen (2008)

$$
\eta_{t}=k[u] A \eta \quad A \equiv\left(\rho_{1}-\rho_{2}\right) /\left(\rho_{1}+\rho_{2}\right)
$$

A. MacFadyen (NYU) Nov 2, $2010 \quad$ GRB20IO, Annapolis, MD

Clumpy Medium

Flying Pancakes

Misaligned

Oblique

Colliding Clumps

AMR jet +wind

AM\&Zhang (2009)

A. MacFadyen (NYU) Nov 2, 2510 GRB20IO, Annapolis, MD

AM\&Zhang (2009)

Shear Patches

Kelvin Helmholtz Clouds

Big Whirls Have Little Whirls

Twisting and Folding

KH:I024³ Rel. MHD

log 10 befa
6.80
6.55
6.30
6.05

5.80
$t=0.00$

Magnetic Energy Saturation

Conclusions

- Hi Res 2D AG jet sims - On/Off-Axis LCs
- Delayed or hidden jet break, E overestimate?
- Slow spreading
- Orphan AGs - SNIbcs result holds
- New $\theta_{j}=0.05$ simulation
- http://cosmo.nyu.edu/afterglowlibrary

Conclusions

- New Accurate PIC Code
- $\Gamma=2$ vs $\Gamma=15$
- Particle acceleration B-field (thin)
- Downstream field decay
- Bubble interactions

Conclusions

- Relativistic MHD sims of turbulence
- Mag Field Dynamo, $\varepsilon_{B}=0.0$ I
- Supersonic relativistic turbulence decays quickly

