Massive Stars as the Progenitors of (long) Gamma-Ray Bursts

Davide Lazzati (NCSU)
Outline

- Prehistory
- History
- Modern Age
- Future
Prehistory

- Woosley 1993 “Gamma-Ray Bursts from stellar mass accretion disks around black holes”

- Paczynski 1998 “Are Gamma-Ray Bursts in star forming regions?”
History: Middle Ages

Era of indirect evidence

• Host Galaxies
• Star forming environments
• Location of explosion
• Environment density & density profile
• Iron lines
• GRB980425 - SN1998bw
Host Galaxies
Environment density & density profile

Panaitescu & Kumar 2001
History: Middle Ages

- GRB98045 - SN1998bw

Holland et al. 2002
History: Renaissance
SN Bumps

Bloom et al. 1999
History: Renaissance

- GRB030329-SN2003dh

Hjorth et al. 2003
(also Stanek et al. 2003)
History: Renaissance

MacFadyen & Woosley (1999) and Aloy et al. (2000)
Modern Era
At least some long-duration GRBs are associated to the explosion of massive compact stars.
The two events are coeval to within less than 1 day.
If we release relativistic energy in the core of a massive compact star, we can get a relativistic jet outside of it.
Do all long GRBs have SNe?

• Every time we can see one we do see it
• But we cannot see SNe at \(z > 1 \), where most GRBs are observed
• At least two long durations GRBs with no SN, but probably misclassification or evidence that the long-short classification is not physical
• “No SN” does not necessarily implies “no stellar progenitor” \((^{56}\text{Ni} \text{ production issue, see next talk by S. Nagataki})\)
Nature of the central engine

• Two main candidates: Black Hole Accretion Disk system, Magnetar.
• All require rotation
• How to tell?

 - Associated NRO (Non-Relativistic Outflow) and implications on nucleosynthesis (better seen in No-GRB SNe)
 - Evidence of BH-Sne e.g. SN1979C, SN2009kf
 - Very energetic events
 - Pre-explosion progenitor properties and/or or late-time engine emission
Consequences on the GRB

• Some 10^{51} e
drilling the
• Opening an
• Variability
• Increased p
• X-ray flares
How many WR stars/type Ibc SNe produce GRBs? Why some do and some don’t?

- GRBs rate ~1% of type Ibc SNe, 0.2% of all CCSNe (Podsiadlowski et al. 2004, Soderberg et al. 2010)
- Special ingredient 1: rotation (for formation of BH)
- Special ingredient 2: low metallicity (to keep angular momentum)
- Special ingredient 3: binarity (?) (Controversial)

Best constraints from observations, still too many uncertainties on the theoretical side. Most models predict only a few per cent of SNe to be associated to a GRB
Massive stars & BROs

BROs = Bipolar Relativistic Outflows

Successful GRB
When engine lasts long enough (t>5 s)
~1% of Ibc

980425-like Faint GRB
When the engine barely makes it to breakout (4.5<t<5 s)
~1% of Ibc

Radio-Bright SN
When the engine barely fails to break out (4<t<4.5 s)
~1% of Ibc

Apparently Normal SN
Any time E<=10^{51} erg
10% of Ibc???

Rates from Podsiadlowski et al. 2004; Guetta & Della Valle 2007; Soderberg et al. 2010
BROs-induced SNe

Stalled jet simulation, time = 0.000s

ρ

V

cm (×10^10)

cm (×10^{11})
None of 5 simulations succeeded in reproducing SN2009bb

\[E_{\text{inj}} = 10^{51} \text{ erg} \]
\[t = 1, 3, 6 \text{ s} \]

\[E_{\text{inj}} = 3 \times 10^{51} \text{ erg} \]
\[t = 1, 3 \text{ s} \]
Producing a 2009bb-like SN requires fine tuning

All SNe with detectable BRO effects amount to ~3% of Ibc SNe

Models for the origin of BROs predict only a few per cent (<1%) Ibc with BROs

Are BROs SNe relevant cosmologically (e.g. for heavy elements inventory?)
Riddles

- Precursors
- Why are short and long GRBs so similar to each other?
- Where are the winds?
Conclusions

What are the BROs engines, how they come about, how many of them?

- Better stellar evolution models to explain high incidence of engines in stripped massive stars
- Better engine models (especially for the BH-AD case)
- Better observational features to select BROs SNe
The Prompt Activity of Gamma-Ray Bursts

Their Progenitors, Engines, and Radiation Mechanisms

NC State University
Department of Physics
5-7 March, 2011
Raleigh, NC

Scientific Organizing Committee:
Davide Lazzati (Chair, NCSU)
Yi-Zhong Fan (Purple Mountain Obs.)
Giancarlo Ghirlanda (Milan)
Jonathan Granot (Hertfordshire)
Pawan Kumar (UT Austin)
Milos Milosavljevic (UT Austin)
Rob Preece (UA Huntsville)
Alicia Soderberg (Harvard)
Bing Zhang (UN Las Vegas)

Invited Speakers:
Andrei Beloborodov (Columbia)
Edo Berger (Harvard)
Niccolò Bucciantini (Stockholm)
Giancarlo Ghirlanda (Milan)
Gabriele Ghisellini (Milan)
Dimitrios Giannios (Princeton)
Serguei Komissarov (TBC, Leeds)
William Lee (UNAM, Mexico City)
Paoio Mazzali (MPA)
Ramesh Narayan (Harvard)
Paul O’Brian (Leicester)
Nicola Omodei (Stanford)
Rosaiba Perna (UC Boulder)
Tsvi Piran (Jerusalem)
Rob Preece (UA Huntsville)
Stephan Rosswog (TBC, Bremen)
Alicia Soderberg (Harvard)
Anatoly Spitkovski (Princeton)
Binbin Zhang (UN Las Vegas)
Star forming environments

Hogg & Fruchter 1999
History: Middle Ages

Iron lines

Piro et al. 2000
History: Middle Ages

- Location of explosion

Bloom et al. 2002