Clues to the origin of X-ray flares with Swift and Fermi

E. Troja (NASA/GSFC) V. Vasileiou (NASA/GSFC & UMBC), L. Piro (INAF/IASF-Rome) S. Cutini (ASI/ASDC), J. McEnery (NASA/GSFC)

on behalf of the Fermi/LAT collaboration

Open Issue: do X-ray flares require a long duration and/or reactivation of the central engine activity? *Swift* observations alone can be explained by a variety of models.

Goal: constrain the mechanism underlying the X-ray flare emission

Method: broad-band analysis from optical to GeV energies: correlate the temporal and spectral behavior as observed by Swift and Fermi

• 49 (35%) show bright X-ray flares at early times (<1000 s)

» only one short GRB

- 12 with good LAT observations: $\theta_{LAT} < 65^{\circ}$ and $\theta_z < 95^{\circ}$
- Only 4 bursts with known redshift, $\langle z \rangle \sim 2.1$

Final sample:

- 29 X-ray flares with simultaneous *Swift/Ferm*i observations

RESULTS: first detection of HE emission in GRB 100728A PRELIMINARY RESULTS, FURTHER VERIFICATION IS ONGOING

Very bright burst: S (10-1000 keV) ~ 1.3 x 10⁻⁴ erg/cm²/s \rightarrow Fermi ARR

 T_{90} ~200 s, faint emission seen up to ~750 s in BAT

Typical GRB spectrum: Band (or Cutoff) with peak energy ~300 keV

8 bright flares in XRT (from ~150 s to ~850 s) with several peaks visible in BAT GRB afterglows commonly show one or two flares *(Chincarini et al. 2007,2010)*

FRED profiles, 0.04 $<\Delta t/t < 0.2$

<u>Spectra</u>: Band ($E_{pk} \sim 1 - 7 \text{ keV}$) or simple power law ($\Gamma \sim 2$), first flare harder

GRB 100728A: LAT detection

Gamma-ray pace Telescope

- Time-resolved search: no detection (TS<11; ~3σ)
- **Time-integrated search**: significant emission (TS~31; >5σ) is detected during the whole flaring duration. Coincident with the GRB position.

Preliminary tests detected no substantial emission in the LAT energy range before (from T₀ to T₀+200 s) or after (from T₀+900s to T₀+1800 s) the flares. However, poor observations during prompt (θ_{LAT} ~ 58°)

- temporally extended high-energy emission (under verification)
- no significant correlation between the XRT and LAT light curves, however the sensitivity of the analysis is limited by the low statistics in LAT and the high duty cycle of flares.

SPECTRAL

- hard spectrum: 1.4 +/- 0.2 (1 σ), while the average X-ray photon index is Γ_X =2.24
- fluence [100 MeV 30 GeV] ≈ 1.5 x 10^{-3} ph/cm², consistent with the extrapolation of the X-ray flares spectrum
- 95% UL during prompt emission ≈ 4.5 x 10⁻³ ph/cm², consistent with the extrapolation of the Band spectrum

Swift Some preliminary considerations

X-ray flares are usually associated to Internal Shock. The observed GeV emission can in turn be produced:

- by the same IS process. The requirement on optical thickness for pair production ($\tau_{\gamma\gamma} < 1$) requires a Lorentz factor **\Gamma > 50 t_v^{-1/6}**. In this context there are two solutions:
 - Synchrotron: the extrapolation of the X-ray spectrum into the GeV range appears consistent with the observed GeV flux level but only marginally with the LAT spectral shape;
 - Inverse Compton: the GeV spectral shape can be accounted by an IC component peaking in or above the LAT range. However v_m(IC)=γ_m²v_m(Syn) requiring γ_m≥1000. As γ_m=1800ε_e this would imply ε_e >0.6
- External IC onto the electrons of the forward shock: we expect only a faint emission (anisotropy, dilution of target photons)

Detection of high-emission emission in GRB100728A during a period of intense X-ray flaring activity:

- Fermi Automated Repointing was fundamental for the detection
- Suggestive of a connection between the two emission components, though other interpretations remain viable (low statistics in LAT)
- Solution Contended Amission: afterglow or central engine?
- simultaneous Swift/Fermi observations are crucial:
 Swift can greatly enhance the Fermi science and vice versa

