Francisco J. Virgili University of Nevada, Las Vegas 2010 GRB Conference, Annapolis MD November 2, 2010 Collaborators: Bing Zhang, Ken Nagamine, Jun-hwan Choi

GRBS AND THE EFFECTS OF METALLICITY, REDSHIFT EVOLUTION AND HIGH-Z BURSTS

HIGH-Z EFFECTS

- Motivated by slew of high-z events
 - +050904 (z=6.3) (Kawai et al. 2006?)
 - + 080913 (z=6.7) (Greiner et al. 2009)
 - + 090423 (z=8.2) (Salvaterra et al. 2009, Tanvir et al. 2009)
- ★ GRB rate seems to increase faster than cosmic SFH (Kistler et al., 2007,2009; Salvaterra et al. 2009)
- Metallicity effects? LF evolution? (Li 2007, Qin et al. 2010)

MONTE CARLO SIMULATIONS

- Test various star forming history models (analytical forms and derived from cosmological simulations)
- Add metallicity and/or evolution considerations
- Test with available observations
 - + L distribution (Swift)
 - + z distribution (Swift)
 - + log N log P (Swift and BATSE)
- × Anderson-Darling test

GRAPHICALLY...

Luminosity function

L-z Flux (i.e. log Nlog P)

L

Metallicity Star-formation history

Evolution

Threshold

What we have...

...what we want to find out

STAR FORMATION HISTORY: PORCIANI AND MADAU (2001)

$$R_{\rm SF2}(z) = 0.15h_{65} \frac{\exp(3.4z)}{\exp(3.4z) + 22} M_{\odot} \ {\rm yr}^{-1} \ {\rm Mpc}^{-3}$$

STAR FORMING HISTORY: HOPKINS & BEACOM (2006)

STAR FORMING HISTORY: BROMM & LOEB (2006)

STAR FORMING HISTORY: CHOI & NAGAMINE (2009)

Derived from cosmological simulations (SPH)

METALLICITY

- GRBs thought to occur primarily in lowmetallicity environments
- Perhaps decrease in metallicity in early universe increases the GRB event rate
- × Analytical formula provided by Li (2007):

$$\Psi(z,\epsilon) = 1 - rac{\Gamma\left(lpha+2,\epsilon^eta 10^{0.15eta z}
ight)}{\Gamma(lpha+2)}$$

× Weighting

REDSHIFT EVOLUTION

- Parameterize general evolution of GRB rate as (1+z)^δ (Kistler 2007, Qin et al. 2010)
- Introduce to both models with and without metallicity
- ×δ = 0.2, 0.5, 0.8

Model	LF parameters	Z	L	L-z	BATSE LNLP	Swift LNLP
	$(lpha_1, L_B, lpha_2)$	Stat, P-value	Stat, Prob	Y/N	T stat, P-value	T stat, P-value
HB+Liw	$(0.21,\!600,\!2.5)$	1.55983, 0.07386	-0.17045, 0.37932	Y	11.23178, 2.00E-05	2.04829, 0.04575
	(0.29,700,2.5)	1.84368, 0.05582	-0.49454, 0.47596	Y	9.747, 8.00E-05	0.35612, 0.24042
	(0.19, 1000, 2.5)	0.22553, 0.27359	-0.82349, 0.57588	Y	0.67135, 0.17822	0.41201, 0.22824
	(0.14, 800, 2.5)	0.35749, 0.24011	-0.23546, 0.3982,	Y	2.06092, 0.04519	-0.42692, 0.45539
$_{\mathrm{BL}}$	(0.2, 1000, 2.5)	1.10898, 0.11575	-0.64039, 0.5205	Y	1.60564, 0.07058	2.31001, 0.03562
	(0.11,600,2.5)	1.16638, 0.10932	-0.09277, 0.35723	Y	0.42516, 0.22544	0.57922, 0.19478
	(0.09, 500, 2.5)	1.8598, 0.05495	0.50674, 0.20874	Y	0.67752, 0.17715,	0.59479, 0.19189
	(0.01, 600, 2.5),	-0.50462, 0.47903	1.62913, 0.06896	Y	-0.07208, 0.35145	-0.02698, 0.33899
BL+Liw	(0.42, 800, 2.5)	-0.59403, 0.50635	0.01934, 0.32642	Y	51.30131, 0	5.18583, 0.00318
	(0.23, 400, 2.5),	-0.08653, 0.35548	1.13401, 0.1129	Y	56.32389, 0	6.52096, 0.00109
	(0.5, 1000, 2.5)	-0.84891, 0.58345	1.22475, 0.10313	Y	50.29342, 0	11.05363, 3.00E-05
	(0.41,600,2.5)	-0.79911, 0.56859	0.57224, 0.19609	Y	57.95978, 0	7.31417, 0.0005

Table 1: SFH models and test statistics

RESULTS HOPKINS AND BEACOM (WEIGHTED METALLICITY, NO EVOLUTION)

CONCLUSIONS

- Simulations show that we need an enhancement of the GRB rate with increased redshift
- Compatible solutions with the observations can be found by including a metallicity dependent term in addition to a decaying star-formation history
- We do not find evidence of the necessity for additional evolution of the rate with increased redshift