UCL DEPARTMENT OF SPACE AND CLIMATE PHYSICS MULLARD SPACE SCIENCE LABORATORY

≜UCL

A Statistical Investigation of GRB X-ray and Optical Afterglows

Sam Oates (UCL-MSSL)

M. J Page, P. Schady, M. De Pasquale, P. Curran, N. P. M. Kuin, S. Zane (UCL-MSSL)
P. A. Evans, K.L. Page (Uni. Leicester)
M. M Chester, T. S. Koch, M. H. Siegel, P. W. A Roming, J. A. Nousek (Penn State Uni.)

arXiv:1010.6212

Comparison of the Average Optical/UV light curve with XRT canonical model

Optical to X-ray Comparison

Using the sample of 26 GRBs from Oates et al. (2009):

- Optical to X-ray hardness ratio
 - Compares the individual data points
- Root Mean Square Deviation
 - Compares the small scale differences
 - Using a sliding window 1 dex wide (bottom panel)
 - Using data within 4 specific time periods (labeled (a),(b),(c),(d))
- Temporal Indices
 - Compare the overall behaviour of the X-ray and optical/UV light curves
 - (a) <500s, (b) 500s-2000s, (c) 2000s-20000s, (d) >2000os

Mean Properties: RMS Deviation Distribution

 Distribution widens during last epoch

Monte Carlo simulation of data in 2000s-20000s epoch convolved with average error of >20000s epoch:

 >20000s is consistent with being wider due to larger data uncertainties.

Mean Temporal Indices

Average temporal indices residing above the line of equal temporal index imply: constant density medium.

After 500s, the temporal indices are consistent with closure relations for constant density medium with

Can this apply to individual GRBs?

Individual GRBs: Temporal Indices, α

Optical and X-ray light curves behave similarly indicating similar production mechanism for both components.

Constant density favoured, but energy injection appears to be required for some GRBs.

→Chromatic breaks ?

Temporal Changes in the Late time Afterglow

Conclusions

- X-ray and optical aftergows behave:
 - Most differently before 500s
 - Most similarly between 2000s and 20000s
- Mean properties indicate constant density medium is favoured with: $v_m < v_O < v_C < v_X$
- Individual properties: require additional energy injection
- Chromatic breaks: 3 GRBs (>12%), strong indication 4 GRBs.
- Complex jet structure and/or additional emission components required to explain at least a few of the GRBs in this sample. (e.g Peng et al. 2005, Ghisellini et al. 2007 Panaitescu et al 2008)

