arXiv: 1009.6001



# Gamma-Ray Bursts of First Stars

Yudai Suwa (YITP, Kyoto University)

Collaboration with K. loka

# Most distant object?

#### Tanvir's talk @ Kyoto 2010



We observed a high-z GRB 090423 (z~8.3), which was the most distant object we observed ever.

Can we reach the first object in the universe?

# The First Stars



http://imagine.gsfc.nasa.gov/docs/sats\_n\_data/satellites/jwst\_darkages.html

### 🯺 Metal free

- Predicted to have been very massive(>~100M\_)
- The end of the cosmic "dark age"
- Related to reionization

### Serve Difficult to observe

Can we observe the first stars using the "FIRST GRB"??

# The First GRB studies so far



# Can the First Stars Produce GRBs?



"Canonical" condition for successful GRB production Jet can penetrate the stellar envelope within the *duration* Star must be compact enough  $\mathbb{C}$  H envelope (expands to R~ 10<sup>13-14</sup>cm) should not be present (consistent with GRB-SN Ibc association) The first star (with H envelope due to weak mass loss) could not produce a GRB??

#### GRB 2010 Conference @ Annapolis

# **Stellar Structure**



Pop III: Ohkubo et al. (2009) GRB: Woosley & Heger (2006) Stellar evolution calculations say...

The first stars encounter the giant phase before core collapse (w/ radiative envelope; r~10<sup>13</sup>cm)

GRB progenitors are expected to be Wolf-Rayet stars (w/o large envelope)

Is it difficult for the first stars to produce successful GRBs?

# Question "Can the first stars produce GRBs?"

- ▶ Absence of H envelope is required for successful GRB
- But the first stars might not loose their massive envelope
- More investigations are necessary

### **Accretion Rate**



# Collapsar Model





- Accreted matter is ejected as a relativistic jet
- Figure If  $\Gamma_h < \theta_j^{-1}$ , the shocked material may escape sideways
  - Cocoon production
  - Avoidance of baryon loading problem
- If the jet head could break out the stellar surface, GRB will be produced!



# Jet Luminosity

- We do not have any concrete observational evidence of the central engine
- The well-discussed models;
  - Magnetic field (Blandford-Znajek process)  $L_j \propto \dot{M}c^2$  [Komissarov & Barkov 09]
  - Neutrino annihilation  $L_j \propto \dot{M}^{9/4} M_{BH}^{-3/2}$  [Zal

[Zalamea & Beloborodov 10]

- ★ We calibrate the overall factor using the GRB progenitor to reproduce the observational characteristics
  - The injected energy after the break out:  $E_j=10^{52}$  erg
  - The jet opening angle:  $\theta_j = 5^\circ$



Birkl+07



#### Nov 2 2010

GRB 2010 Conference @ Annapolis

#### McKinney 07

## Inside and Outside the Star



| Model   | Mass<br>[M⊙] | Radius<br>[10 <sup>11</sup> cm] | Mechanism | break<br>time [s] | E <sub>GRB</sub><br>[10 <sup>52</sup> erg] | E <sub>cocoon</sub><br>[10 <sup>52</sup> erg] | T90  | E <sub>iso</sub><br>[10 <sup>54</sup> erg] |
|---------|--------------|---------------------------------|-----------|-------------------|--------------------------------------------|-----------------------------------------------|------|--------------------------------------------|
| Pop III | 915          | 90                              | MHD       | 690               | 45                                         | 57                                            | 1500 | 120                                        |
|         |              |                                 | Neutrino  | failed GRB        |                                            |                                               |      |                                            |
| GRB     | 16           | 0.4                             | MHD       | 4.7               | 1.0                                        | 0.23                                          | 49   | 2.6                                        |
|         |              |                                 | Neutrino  | 2.8               |                                            | 0.42                                          | 10   |                                            |

### Observables



- Solution Assuming the conversion efficiency from the jet kinetic energy (E<sub>j</sub>) to gamma rays (E<sub>γ</sub>) as 10 %;  $E_{\gamma,\text{iso}} = \varepsilon_{\gamma} E_{\text{j}} = 1.2 \times 10^{55} \left(\frac{\varepsilon_{\gamma}}{0.1}\right) \text{ erg}$
- Figure The peak energy of gamma rays for an observer (supposing E<sub>p</sub>~0.5 MeV at GRB frame)

$$E_{\rm p} \simeq 25 \left(\frac{1+z}{20}\right)^{-1} \rm keV$$

The observable flux just after the break out is ~10<sup>-9</sup> erg cm<sup>-2</sup> s<sup>-1</sup> (@z=19 with WMAP parameters)

# Summary

# Question "Can the first stars produce GRBs?"

- Absence of H envelope is required for successful GRB
- But the first stars might not loose their massive envelope
- More investigations are necessary
- Stellar property **"Powerful & long accretion"** 
  - The central engine keep its powerful activity for the long time

# Answer "It's possible!"

- But very dim...
- How to trigger them?