

Fermi-LAT Upper Limits on Gamma-ray Bursts

Daniel Kocevski

Kavli Institute for Particle Astrophysics and Cosmology SLAC - Stanford University

On behalf of the Fermi collaboration

Fermi GRBs as of 101026

- 565 GBM GRBs
- ~48% in LAT FOV

- 18 LAT GRBs
- 6.4% of GRBs in FOV

LAT Upper Limits on GRBs

- What are the upper limits to the 0.1-10 GeV flux for GBM only bursts?
- Can we rule out high energy emission for these events?
- How do these upper limits compare to the expected flux?
- Could point to interesting physics
 - Intrinsic spectral breaks?
 - EBL or $\gamma \gamma$ absorption?

Methodology

- GRB Pipeline at SLAC
 - Analyze the LAT data for all GBM detected GRBs in ~ 1 hour
- Procedure:
 - Select GRBs within the LAT FOV (θ < 65°)
 - Model background using the empirical background estimator
 - Calculate likelihood and counting upper limits
 - For T90, 30s, and 100s time intervals
 - Compare limits to predicted LAT fluence by extrapolating the GBM determined high energy power law index

Upper Limits Sample

- GRBs Analyzed: 435
 - All bursts listed at the FSSC until March 1st.
- GRBs in LAT FOV: 209 (48%)
- GRBs with likelihood limits: 185 (43%)
 - The loss of 5% of the bursts in the LAT FOV for which we could not obtain upper limits were due to lack of data near the burst (i.e. a SAA transit right before or after the trigger)
- GRBs with counting imits: 179 (41%)
 - The loss of 7% of the bursts in the LAT FOV for which we could not obtain upper limits were due to lack of data AND background modeling for high zenith GRBs

Upper Limits Comparison

- Good agreement between the two methods
- The 100s limits are roughly 0.5 dex deeper than the 30s limits

Upper Limits vs. Exposure & Angle

- Exposure falls smoothly vs. LAT boresight angle
- Upper limits are therefore correlated with the LAT boresight angle at trigger

GBM Spectral Extrapolations

- Fit Nal+BGO spectrum from 8 keV to 40 MeV
- Extrapolate the expected flux in the 100 MeV to 10 GeV range
- Compare upper limits to this expected LAT flux

Daniel Kocevski, Annapolis, Nov 1st-4th 2010

Spectroscopy Sample

- Bright BGO Sample:
 - GBM detected bursts with > 70 cts/s in TRIGDAT
 - 53 GRBs (1.5 years)
- "Gold" Sample:
 - I6 GRBs in LAT FOV with good Nal+BGO fits
- Expected LAT Flux
 - Extrapolate beta to find expected LAT flux
 - We use the full covariance matrix to estimate beta error

Joint Spectral Fits

GRB 0905285

GRB 08092577

Daniel Kocevski, Annapolis, Nov 1st-4th 2010

Expected Flux & Fluence Ratios

The expected flux & fluence exceeds the T90 LAT flux and fluence upper limits for a majority of GRBs

How common are breaks?

- Roughly 3/4 of the simulated BATSE sample have expected flux values that exceed the median 30s LAT upper limit
- The same proportion holds for the bright BATSE and bright BGO bursts
- This could explain the number of "LAT dark bursts"

 It appears that high energy spectral breaks may be very common among GRBs

Interpretation?

- Intrinsic spectral breaks?
 - No evidence for broken power law has not been
- Extragalactic background light?
 - Should not be this strong and low E
- Pair creation opacity?
 - GRBs may have a broad distribution of bulk Lorentz factors
 - LAT "dark" bursts may represent the low portion of the distribution

Lorentz Factor Estimations

Optical depth to pair production

 $\tau_{\gamma\gamma}(E_0) = \sigma_T - \frac{d_L(z)}{c\Delta t}^2 - E_c f(E_c)(1+z)^{-2(\beta+1)} \Gamma^{2(\beta-1)} - \frac{E_0 E_c}{m_e^2 c^4} - F(\beta)$

- Find Γ_{min} when $\tau_{\gamma\gamma} < 1$
 - E_c = highest energy photon detected
- Find Γ_{max} when $\tau_{\gamma\gamma} = 1$
 - $E_c =$ first energy bin with an upper limit below the model
- Need to know β , Δ t, z, E_c
 - Make some assumptions; find β and E_c through spectral fitting

Lorentz Factor Distribution

- 3 LAT detected bursts have $\Gamma_{min} > 800$
- Assume $\Delta t \sim 0.01$ s and 1 < z < 5
- Using E_c ~ 1 GeV
 - Γ_{max} ~ 100-800
- Using E_c ~ 100 MeV
 - Γ_{max} ~ 50-600
- LAT bursts may represent the high end of the Γ distribution

Conclusions

- GRB may have a wide range of Lorentz factors
- LAT "dark" bursts likely represent the low end of the Lorentz factor distribution
 - Γ_{max} ~ 100-800
- LAT detections represent the high end of the Lorentz factor distribution
 - $\Gamma_{min} > 800$
- Pair production opacity could explain the large number of LAT non-detections of bursts with hard spectra

Fluence-Fluence Comparison

