Observational evidence for magnetars powering GRBs

Paul O’Brien,
Antonia Rowlinson, Nicola Lyons, Bing Zhang,
Nora Troja, Dick Willingale, Phil Evans, Nial Tanvir, Edo Berger, Andy Fruchter, Tilan Ukwatta
and others ...
Magnetars

2004 December 27 – first big Swift “event”

Galactic magnetars have B-fields of order $10^{14} – 10^{15}$ gauss.

Can be rotating relative slowly (seconds).

Giant SGR flares release more than 10^{46} erg

Could explain some of the (very) nearby short GRBs
Some GRBs may be powered by an unstable, millisecond pulsar (a magnetar) (e.g., Usov 1992; Duncan & Thompson 1992; Metzger 2009; Dai et al. 2006)

Fast rotation plus very strong magnetic field may power a jet (and hypernova)

Extraction rotational energy \Rightarrow inject energy into the light curve \Rightarrow rapid decline when the magnetar collapses to a BH (Zhang & Mézsáros 2001)

Collapsar – LGRBs

Binary Merger – SGRBs
Example GRB X-ray decay

Prompt emission stops

Second component becomes visible

Off-axis?

Final decay starts

Late break (collimation?)

GRB050315

(O’Brien et al. 2006; Willingale et al. 2007)
First magnetar example: GRB 070110 (Troja et al. 2007)

After the initial (impulsive event) see a late excess or “internal plateau” followed by a very steep decay.

Propose “internal plateau” due to the spin-down of a magnetar which then collapses.

Not seen in the optical which appears to show a fairly “standard” afterglow.
A larger sample
(Lyons et al. 2010)

Analysed all Swift GRBs up to the end of 2008.

Find 10 magnetar candidates.

All are long GRBs.

The internal plateau and rapid declines are only seen in X-rays.
Derive magnetar parameters

\[L \propto B_p^2 / P_0^4 \quad \text{and} \quad T_{\text{em}} \propto P_0^2 / B_p^2 \]

Expect a relation between the pulsar initial spin period \((P_0) \), dipole field strength \((B_p) \), luminosity \((L) \) and the characteristic timescale \((T_{\text{em}}) \) for spin-down:

\[L \propto B_p^2 / P_0^4 \quad \text{and} \quad T_{\text{em}} \propto P_0^2 / B_p^2 \]

(assume standard values for mass and radius of NS)
GRB 090515 – a short magnetar
(Rowlinson et al. 2010 – see poster 5.04)

T90 = 0.036s
Fluence = 2×10^{-8} erg s$^{-1}$ (15-150 keV)
Highest short GRB X-ray flux at 100s
Very unusual given low γ-ray fluence

Gemini-N, r-band at 6300s
See a (fading) r=26.4 source
Figure 3. The fluence in the energy band 15 - 150 keV versus the 0.3 - 10 keV flux for all Swift SGRBs which were observed at 100s after the trigger time. The filled circle marks the location of GRB 090515. (070724A has a flare)
GRB 090515

Parameters at various z:
Blue line, $M=1.4 \, M_\odot$; purple, $M=2.1 \, M_\odot$.
Green points: LGRBs, Lyons et al. (2010)

Impose causality limit:
sound speed \leq light speed
Red solid, $1.4 \, M_\odot$; red dashed, $2.1 \, M_\odot$

Consistent with LGRB cases for $z \sim 0.3-5$
• 10 long and 1 short GRBs show an “internal plateau” followed by a steep decline

• Evidence for energy injection by a magnetar (tapping rotational energy) before it collapses to a black hole – must not imply a total energy larger than that available from rotation (recent results on massive pulsars increases parameter space)

• Possible test in future using detection of gravity-waves (GW):
 ➢ A merger or a collapsar GW signal (e.g. Abadie et al. 2010)
 ➢ Spin-down GW signal (e.g. Corsi & Meszaros 2010)
 ➢ Magnetar collapse to a black hole GW signal (e.g. Novak 1998)

• Nearby cases (few 100Mpc) would provide a test-case where a simultaneous EM and GW light-curves show correlated multiple signals

• Need a functioning GRB space mission when advanced-LIGO working!!