### Leptonic-Hadronic Modeling of Extended High-Energy Emission from Fermi LAT GRBs

### Soebur Razzaque

National Research Council Research Associate U.S. Naval Research Laboratory, Washington, DC

Razzaque, S. 2010, Astrophys. J. Lett. 724, L109-L112 arXiv:1004.3330 [astro-ph.HE]

Gamma Ray Bursts Conference, Nov 1-4, Annapolis, MD

## Extended HE Emission from LAT GRBs

10<sup>-2</sup>

Bright LAT GRBs show significant high energy emission extending after the low energy emission disappear below detection threshold

#### 090902B



## Extended Emission from GRB 090510

Multi-wavelength light curves in γ ray, x ray and UV Smooth power-law evolution of the fluxes are compatible with afterglow model



## GRB Afterglow - Blast Wave Evolution

Adiabatic blast wave decelerating in uniform density medium Blandford-McKee 1976

- Relationship between *t*,  $\Gamma$  and *R* :  $R = 2\Gamma^2 act(1+z)^{-1}$
- **Deceleration time:**  $t_{dec} \approx 1.9(1+z)(E_{55}/n)^{1/3}\Gamma_3^{-8/3}$  s

a = 1 for coasting a = 4 after decel.

Total KE in blast wave = swept-up material

- Bulk Lorentz factor:  $\Gamma \approx 763(1+z)^{3/8} (E_{55}/n)^{1/8} t_s^{-3/8}$
- Blast wave radius:  $R \approx 1.4 \times 10^{17} (1+z)^{-1/4} (E_{55}/n)^{1/4} t_s^{1/4} \text{ cm}$
- Energy injection rate in the forward shock:  $e_{shock} = 4\pi n m_p c^2 \Gamma^2$
- Magnetic field in the FS:  $B' \approx 300(1+z)^{3/8} \varepsilon_B^{1/2} (E_{55} n^3)^{1/8} t_s^{-3/8} G$

## Leptonic-Hadronic Synchrotron Model

#### Both electrons and ions are accelerated in the Forward shock

- Total isotropic-equivalent jet energy :  $E_{k,iso} > E_{\gamma,iso} \approx 10^{53} \text{ erg}$
- Constant density surrounding medium :  $n_{\rm ISM} \approx 1 \text{ cm}^{-3}$
- Jet deceleration time scale :  $t_{dec} \le 1$  s and  $\Gamma_0 \ge 1000$



- Crucial parameters:  $\varepsilon_B$ ;  $\eta_A$ ,  $\eta_e$ , k and  $k_2$  are fitted from data
- Fraction of jet energy:  $\varepsilon_A$  and  $\varepsilon_e$  are calculated from required spectra

### GRB Afterglow - Synchrotron Spectra



v (Hz)

**Fast cooling :**  $v_m > v_c$ 

 $F_{\nu} \propto \nu^{-\beta} t^{-\alpha}$  closure relations

$$v_c < v < v_m : F_v \propto v^{-1/2} t^{-1/4}$$
  
 $v > v_m > v_c : F_v \propto v^{-p/2} t^{-(3/4)(p-2/3)}$ 

*p*-particle spectral index :  $\frac{dN}{dE} \propto E^{-p}$ 

Slow cooling :  $v_c > v_m$   $F_v \propto v^{-\beta} t^{-\alpha}$  closure relations  $v_m < v < v_c : F_v \propto v^{-(p-1)/2} t^{-(3/4)(p-1)}$  $v > v_c > v_m : F_v \propto v^{-p/2} t^{-(3/4)(p-2/3)}$ 

# Modeling GRB 090510 Data

- Use closure relations  $F_{\nu} \propto \nu^{-\beta} t^{-\alpha}$  to determine  $\beta$  and k or  $k_2$
- Note: *e*-synchrotron model alone cannot satisfy the closure relations
- $\Box$  XRT light curve:  $t^{-0.74\pm0.03}$  in between ~100 s and 1.4 ks
  - $\Box$  Model with *e*-synchrotron in the fast-cooling and for  $v_{XRT} > v_{m,e} > v_{c,e}$

$$\Box k = (4/3)\alpha_{\text{XRT}} + 2/3 = 1.65 \pm 0.04$$
;  $\beta_{\text{XRT}} = k/2 = 0.83 \pm 0.02$ 

- $\Box$  LAT light curve:  $t^{-1.38\pm0.07}$  in between ~0.3 s and 100 s
- □ Model with *p*-synchrotron in the slow-cooling and for  $v_{m,p} < v_{LAT} < v_{c,p}$ □  $k_2 = (4/3)\alpha_{\gamma} + 1 = 2.84 \pm 0.09$ ;  $\beta_{\gamma} = (k_2 - 1)/2 = 0.92 \pm 0.05$
- $\Box \beta_{\gamma}$  needs to be compatible with measured LAT photon index (and it is)
- □ Parameters such as  $n_{\rm ISM}$  and  $\Gamma_0$  are mainly constrained by  $t_{\rm dec} \le 0.3$  s
- $\Box$  Parameters such as  $E_{k,iso}$ ,  $\varepsilon_B$ ,  $\eta_e$ ,  $\eta_p$  are set to produce required fluxes
- $\square$  Parameters  $\epsilon_{e}$  ,  $\epsilon_{p}$  are calculated from other parameters and constrained <1
- □ UVOT light curve is constrained by XRT (*e*-synchrotron)
- $\Box$  BAT light curve can not be fitted  $\rightarrow$  continued central engine activity

### Leptonic-Hadronic Synchrotron Spectra



# Light Curves from Afterglow Modeling

Multiwavelength light curves from combined leptonic-hadronic modelling Solid lines: *p*-synchrotron, Dashed lines: *e*-synchrotron



## Absolute GRB Energy

$$E_{\gamma,\text{iso}} \sim 10^{53} \text{ erg}$$
  
 $E_{\gamma,\text{iso}} / E_{\text{k,iso}} \sim 0.01$ 

Not in supernova remnants!

Collimation-corrected energy from jet-break time

$$t_{jet} \approx 10^5 (1+z) (E_{55}/n)^{1/3} \theta_{-1}^{8/3} \text{ s}$$
 Sari, Piran & Halpern 1999

Jet-break time during the Earth Occultation:  $1.4 \text{ ks} < t_{jet} < 5.1 \text{ ks}$ → Jet opening angle: 1 degree  $< \theta_{jet} < 1.5$  degree → Absolute jet energy:  $(3-7) \times 10^{51}$  erg

Is there an absolute maximum?  $10^{53} \text{ erg} \rightarrow \theta_{jet} \sim 6 \text{ degree}$  Dale Frail

### LAT Light Curve of GRB 090902B

*z* =1.82



#### **Deceleration time**

$$t_{dec} \approx 1.9(1+z) (E_{55}/n)^{1/3} \Gamma_3^{-8/3} s$$

#### Fitting parameters

$$E_{k,iso} = 2 \times 10^{56} \text{ erg} ; n = 20 \text{ cm}^{-3}$$
  

$$\Gamma_0 = 900 ; \varepsilon_B = 0.3 ; \varepsilon_p \sim 0.5$$
  

$$\eta_p \sim 2 \times 10^4 ; k_2 \sim 3$$

$$E_{\gamma,\text{iso}} \sim 4 \times 10^{54} \text{ erg}$$
  
 $E_{\gamma,\text{iso}} / E_{\text{k,iso}} \sim 0.02$ 

Total energy constraint

 $E_{\rm k} \le 10^{53} {\rm ~erg}$  $\theta_{\rm jet} \le 2 {\rm ~degree}$ 

Within 1-10 deg.

### Other Processes in the Blast Wave

Opacities for yy pair production and photopion production for maximum energy particles

- synchrotron photons are targets for  $\gamma\gamma$  and  $p\gamma$
- → maximum *e*-sync. photon ~100 GeV
- → maximum *p*-sync. photon >1 TeV
- γγ pair production
   can only be marginally
   important

Ground-based detectors can probe *p*-synch model



Detectability of >100 GeV Gamma Rays

Extragalactic Background Light (EBL) limits distance of the source

GRBs up to  $z \sim 0.5$  can be detected at  $\leq 200$  GeV



### Conclusions

#### Detection of GRB 090510 is an extraordinary event

- Multiwavelength contemporaneous data for the first time from Fermi GBM and LAT, Swift BAT, XRT and UVOT
- □ Most energetic short GRB:  $10^{53}$  erg compared to typical  $10^{49}$ - $10^{51}$  erg
- **Emission is complex, involving multiple components** 
  - Simple afterglow model with electron-synchrotron radiation fails to reproduce multi-wavelength light curves
  - Delay in high-energy, >100 MeV, emission with different temporal decay than in other wavelength suggest a different origin
- □ I have presented a leptonic-hadronic afterglow model
  - $\Box$  *p*-synchrotron radiation explains high-energy emission
  - $\Box$  *e*-synchrotron radiation explains XRT and UVOT (part) light curves

Multi-wavelength data from more GRBs and detection by ground-based detectors will either provide evidence or constrain *p*-synchrotron radiation model

## **Detection of GRB 090510**

### Fermi GBM and LAT observations

- □ Trigger on 2009 May 10 at 00:22:59 UT
- $\Box$  Fluence of the burst : ( $T_0$ +0.5  $T_0$ +1.0) s
  - 5×10<sup>-5</sup> erg cm<sup>-2</sup> (10 keV 30 GeV); 4×10<sup>-7</sup> erg cm<sup>-2</sup> (15 keV 150 GeV)

### Swift BAT observations

- □ Trigger on 2009 May 10 at 00:23:00 UT
- □ (RA, DEC) = (333.55°, -26.58°)
- **Duration :**  $T_{90} = 0.3 \pm 1 \text{ s}$
- □ Fluence of the burst :  $(T_0+0 T_0+0.4)$  s
  - 4×10<sup>-7</sup> erg cm<sup>-2</sup> (15 keV 150 GeV)

### □ Spectroscopic redshift (3.5 days) from VLT/FORS2

- **a**  $0.903 \pm 0.003$
- $\Box$  10<sup>53</sup> erg isotropic-equivalent gamma-ray energy release!
- □ Most luminous short GRB detected to-date!!

## **GBM and LAT Light Curves**



Photon arrival info.

- → GBM triggered on a weak precursor
- → Main GBM emission starts at  $\sim T_0 + 0.5$  sec
- → >100 MeV emission starts at  $\sim T_0$ +0.65 s
- $\rightarrow$  >1 GeV emission
  - starts at  $\sim T_0 + 0.7$  s
- □ 31 GeV photon at  $\sim T_0 + 0.83$  s
- → Highest from a SGRB
- □ Extended HE emission

# Spectroscopy of GRB 090510

#### PL component in addition to phenomenological Band Spectrum



### **UHECR Signature in GRB Emission**

UHECR acceleration in magnetic field and interactions may provide γ ray signature from GRBs, specially in *Fermi* LAT

- Synchrotron radiation and associated e<sup>+</sup>e<sup>-</sup> cascade radiation
- *• Photohadronic interactions with observed keV MeV γ rays and cascade emission*



- Very high jet bulk Lorentz factor reduces photohadronic cooling
  - Could work in other bright GBM bursts
  - *A yy cutoff in HE spectrum would be an indication*
- Synchrotron cooling is dominant in high *B* field

Razzaque, Dermer, Finke & Atoyan, arXiv:0811.1160

### Synchrotron Radiation from GRB Jets

Particle acceleration in the forward shock *B* field
Cooling is dominated by synchrotron radiation in the same *B* field



□ Fast cooling  $\gamma_m > \gamma_c$  or  $\nu_m > \nu_c$ □ All break frequencies evolve with time as the *B* field (and Γ) does

### Synchrotron Radiation from GRB Jets

Particle acceleration in the forward shock *B* field
Cooling is dominated by synchrotron radiation in the same *B* field



□ Fast cooling  $\gamma_m > \gamma_c$  or  $\nu_m > \nu_c$ ; Slow cooling  $\gamma_m < \gamma_c$  or  $\nu_m < \nu_c$ □ All break frequencies evolve with time as the *B* field (and Γ) does