Leptonic-Hadronic Modeling of Extended High-Energy Emission from Fermi LAT GRBs

Soebur Razzaque

National Research Council Research Associate
U.S. Naval Research Laboratory, Washington, DC

Gamma Ray Bursts Conference, Nov 1-4, Annapolis, MD
Extended HE Emission from LAT GRBs

Bright LAT GRBs show significant high energy emission extending after the low energy emission disappear below detection threshold.

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 xlabel={\(T - T_0\) [s]},
 ylabel={Flux \([\text{ph cm}^{-2} \text{s}^{-1}]\)},
 xmode=linear,
 ymode=linear,
 xmin=1e0,
 xmax=1e3,
 ymin=1e-3,
 ymax=1e2,
 ytick={1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2},
 yticklabels={\(10^{-3}\), \(10^{-2}\), \(10^{-1}\), \(10^{0}\), \(10^{1}\), \(10^{2}\)},
 xtick={1e0, 1e1, 1e2, 1e3},
 xticklabels={1, 10, 100, 1000},
 legend pos=north east,
 grid=both,
 grid style={line width=0.5pt, draw=gray!50},
 area style,
]

% Add your data points here
\end{axis}
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 xlabel={\(T - T_0\) [s]},
 ylabel={Photon Index},
 xmode=linear,
 ymode=linear,
 xmin=1e-3,
 xmax=1e3,
 ymin=-3.5,
 ymax=-1.5,
 ytick={-3.5, -3.0, -2.5, -2.0, -1.5},
 yticklabels={-3.5, -3.0, -2.5, -2.0, -1.5},
 xtick={1e-3, 1e0, 1e1, 1e2, 1e3},
 xticklabels={\(10^{-3}\), 1, 10, 100, 1000},
 legend pos=north east,
 grid=both,
 grid style={line width=0.5pt, draw=gray!50},
 area style,
]

% Add your data points here
\end{axis}
\end{tikzpicture}
\end{center}

090902B

\(t^{-1.5}\)
Extended Emission from GRB 090510

Multi-wavelength light curves in γ ray, x ray and UV
Smooth power-law evolution of the fluxes are compatible with afterglow model

De Pasquale et al. 2009
Adiabatic blast wave decelerating in uniform density medium

Blandford-McKee 1976

- Relationship between t, Γ and R:
 \[R = 2\Gamma^2ac t(1+z)^{-1} \]

- Deceleration time:
 \[t_{\text{dec}} \approx 1.9(1+z)(E_{55}/n)^{1/3}\Gamma^{-8/3} \text{s} \]
 \[a = 1 \text{ for coasting} \]
 \[a = 4 \text{ after decel.} \]

Total KE in blast wave = swept-up material

- Bulk Lorentz factor:
 \[\Gamma \approx 763(1+z)^{3/8}(E_{55}/n)^{1/8}t_s^{-3/8} \]

- Blast wave radius:
 \[R \approx 1.4 \times 10^{17}(1+z)^{-1/4}(E_{55}/n)^{1/4}t_s^{1/4} \text{ cm} \]

- Energy injection rate in the forward shock:
 \[e_{\text{shock}} = 4\pi n m_p c^2 \Gamma^2 \]

- Magnetic field in the FS:
 \[B' \approx 300(1+z)^{3/8}\varepsilon_B^{1/2}(E_{55}n^3)^{1/8}t_s^{-3/8} \text{ G} \]
Leptonic-Hadronic Synchrotron Model

Both electrons and ions are accelerated in the Forward shock

- Total isotropic-equivalent jet energy: $E_{k,\text{iso}} > E_{\gamma,\text{iso}} \approx 10^{53}$ erg
- Constant density surrounding medium: $n_{\text{ISM}} \approx 1$ cm$^{-3}$
- Jet deceleration time scale: $t_{\text{dec}} \leq 1$ s and $\Gamma_0 \geq 1000$

- Crucial parameters: ε_B, η_A, η_e, k and k_2 are fitted from data
- Fraction of jet energy: ε_A and ε_e are calculated from required spectra
GRB Afterglow - Synchrotron Spectra

Fast cooling: $\nu_m > \nu_c$

$F_\nu \propto \nu^{-\beta} t^{-\alpha}$ closure relations

$\nu_c < \nu < \nu_m : F_\nu \propto \nu^{-1/2} t^{-1/4}$

$\nu > \nu_m > \nu_c : F_\nu \propto \nu^{-p/2} t^{-(3/4)(p-2/3)}$

p-particle spectral index: $\frac{dN}{dE} \propto E^{-p}$

Slow cooling: $\nu_c > \nu_m$

$F_\nu \propto \nu^{-\beta} t^{-\alpha}$ closure relations

$\nu_m < \nu < \nu_c : F_\nu \propto \nu^{-(p-1)/2} t^{-(3/4)(p-1)}$

$\nu > \nu_c > \nu_m : F_\nu \propto \nu^{-p/2} t^{-(3/4)(p-2/3)}$

Sari, Piran & Narayan 1998
Modeling GRB 090510 Data

Use closure relations $F_\nu \propto \nu^{-\beta} t^{-\alpha}$ to determine β and k or k_2

Note: e-synchrotron model alone cannot satisfy the closure relations

- XRT light curve: $t^{-0.74 \pm 0.03}$ in between ~ 100 s and 1.4 ks
 - Model with e-synchrotron in the fast-cooling and for $\nu_{\text{XRT}} > \nu_{\text{m,e}} > \nu_{\text{c,e}}$
 - $k = (4/3)\alpha_{\text{XRT}} + 2/3 = 1.65 \pm 0.04$; $\beta_{\text{XRT}} = k/2 = 0.83 \pm 0.02$

- LAT light curve: $t^{-1.38 \pm 0.07}$ in between ~ 0.3 s and 100 s
 - Model with p-synchrotron in the slow-cooling and for $\nu_{\text{m,p}} < \nu_{\text{LAT}} < \nu_{\text{c,p}}$
 - $k_2 = (4/3)\alpha_{\gamma} + 1 = 2.84 \pm 0.09$; $\beta_{\gamma} = (k_2 - 1)/2 = 0.92 \pm 0.05$
 - β_{γ} needs to be compatible with measured LAT photon index (and it is)

- Parameters such as n_{ISM} and Γ_0 are mainly constrained by $t_{\text{dec}} \leq 0.3$ s
- Parameters such as $E_{k,\text{iso}}$, ε_B, η_e, η_p are set to produce required fluxes
- Parameters ε_e, ε_p are calculated from other parameters and constrained < 1
- UVOT light curve is constrained by XRT (e-synchrotron)
- BAT light curve can not be fitted \Rightarrow continued central engine activity
Leptonic-Hadronic Synchrotron Spectra

Protons and electrons

- p is always slow-cooling
- e shifts from fast- to slow- cooling in 2×10^6 s

p - synchrotron

$(k_2 = 2.84) \quad \nu F_\nu \propto \begin{cases} \nu^{4/3} ; \nu < \nu_{m,p} \\ \nu^{0.08} ; \nu \geq \nu_{m,p} \end{cases}$

e - synchrotron

$(k = 1.65) \quad \nu F_\nu \propto \begin{cases} \nu^{4/3} ; \nu < \nu_{c,e} \\ \nu^{1/2} ; \nu_{m,e} > \nu \geq \nu_{c,e} \\ \nu^{0.18} ; \nu \geq \nu_{m,e} \end{cases}$

LAT emission is dominated by p-synchrotron with photon spectrum $\propto \nu^{-1.92}$

Compatible with data

$E_k = 10^{55.3}$ erg
$n = 3 \text{ cm}^{-3}$
$\epsilon_p = 0.3$
$\epsilon_e = 10^{-4}$
$\epsilon_p = 0.5$

LAT emission is dominated by p-synchrotron with photon spectrum $\propto \nu^{-1.92}$

Compatible with data

GRB 2010, Annapolis
S. Razzaque
8/14
Light Curves from Afterglow Modeling

Multiwavelength light curves from combined leptonic-hadronic modelling

Solid lines: \(p \)-synchrotron, Dashed lines: \(e \)-synchrotron

\[
\begin{align*}
E_{k,\text{iso}} &= 2 \times 10^{55} \text{ erg} \\
n &= 3 \text{ cm}^{-3} \\
\Gamma_0 &= 2400 \\
\varepsilon_B &= 0.3 \\
\varepsilon_p &= 0.5 \\
\varepsilon_e &= 10^{-4} \\
\eta_e &= 20(m_e/m_p) \\
\eta_p &= 5000 \\
k &= 1.65 \pm 0.04 \\
k_2 &= 2.84 \pm 0.09
\end{align*}
\]
Absolute GRB Energy

Ratio of gamma-ray to kinetic energy
Too low efficiency?

Not in supernova remnants!

Collimation-corrected energy from jet-break time

$$t_{\text{jet}} \approx 10^5 (1+z) (E_{55}/n)^{1/3} \theta_{-1}^{8/3} \text{ s}$$

Jet-break time during the Earth Occultation: 1.4 ks < t_{jet} < 5.1 ks

⇒ Jet opening angle: 1 degree < θ_{jet} < 1.5 degree

⇒ Absolute jet energy: (3-7)×10^{51} erg

Is there an absolute maximum? 10^{53} erg ⇒ θ_{jet} ∼ 6 degree

$E_{\gamma,\text{iso}} \sim 10^{53}$ erg
$E_{\gamma,\text{iso}}/E_{k,\text{iso}} \sim 0.01$

Sari, Piran & Halpern 1999

Dale Frail
LAT Light Curve of GRB 090902B

\[
z = 1.82
\]

Deceleration time

\[
t_{\text{dec}} \approx 1.9(1 + z)(E_{55}/n)^{1/3} \Gamma_3^{-8/3} \text{ s}
\]

Fitting parameters

\[
E_{k,\text{iso}} = 2 \times 10^{56} \text{ erg} ; n = 20 \text{ cm}^{-3}
\]
\[
\Gamma_0 = 900 ; \varepsilon_B = 0.3 ; \varepsilon_p \sim 0.5
\]
\[
\eta_p \sim 2 \times 10^4 ; k_2 \sim 3
\]

\[
E_{\gamma,\text{iso}} \sim 4 \times 10^{54} \text{ erg}
\]
\[
E_{\gamma,\text{iso}} / E_{k,\text{iso}} \sim 0.02
\]

Total energy constraint

\[
E_k \leq 10^{53} \text{ erg}
\]
\[
\theta_{\text{jet}} \leq 2 \text{ degree}
\]

Within 1-10 deg.
Other Processes in the Blast Wave

Opacities for $\gamma\gamma$ pair production and photopion production for maximum energy particles

\rightarrow synchrotron photons are targets for $\gamma\gamma$ and $p\gamma$

\rightarrow maximum e-sync. photon \sim100 GeV

\rightarrow maximum p-sync. photon >1 TeV

\rightarrow $\gamma\gamma$ pair production can only be marginally important

Ground-based detectors can probe p-synch model
Detectability of >100 GeV Gamma Rays

Extragalactic Background Light (EBL) limits distance of the source

GRBs up to $z \sim 0.5$ can be detected at ≤ 200 GeV

See Joel Primack’s talk
Conclusions

- Detection of GRB 090510 is an extraordinary event
 - Multiwavelength contemporaneous data for the first time from Fermi GBM and LAT, Swift BAT, XRT and UVOT
 - Most energetic short GRB: 10^{53} erg compared to typical $10^{49}-10^{51}$ erg

- Emission is complex, involving multiple components
 - Simple afterglow model with electron-synchrotron radiation fails to reproduce multi-wavelength light curves
 - Delay in high-energy, >100 MeV, emission with different temporal decay than in other wavelength suggest a different origin

- I have presented a leptonic-hadronic afterglow model
 - p-synchrotron radiation explains high-energy emission
 - e-synchrotron radiation explains XRT and UVOT (part) light curves

Multi-wavelength data from more GRBs and detection by ground-based detectors will either provide evidence or constrain p-synchrotron radiation model
Detection of GRB 090510

- **Fermi GBM and LAT observations**
 - Trigger on 2009 May 10 at 00:22:59 UT
 - Fluence of the burst: \((T_0 + 0.5 - T_0 + 1.0)\) s
 - \(5 \times 10^{-5}\) erg cm\(^{-2}\) (10 keV - 30 GeV); \(4 \times 10^{-7}\) erg cm\(^{-2}\) (15 keV - 150 GeV)

- **Swift BAT observations**
 - Trigger on 2009 May 10 at 00:23:00 UT
 - \((RA, DEC) = (333.55^\circ, -26.58^\circ)\)
 - Duration: \(T_{90} = 0.3 \pm 1\) s
 - Fluence of the burst: \((T_0 + 0 - T_0 + 0.4)\) s
 - \(4 \times 10^{-7}\) erg cm\(^{-2}\) (15 keV - 150 GeV)

- **Spectroscopic redshift (3.5 days) from VLT/FORS2**
 - \(0.903 \pm 0.003\)
 - \(10^{53}\) erg isotropic-equivalent gamma-ray energy release!
 - Most luminous short GRB detected to-date!!
GBM and LAT Light Curves

Photon arrival info.

- GBM triggered on a weak precursor
- Main GBM emission starts at \(\sim T_0 + 0.5 \) sec
- >100 MeV emission starts at \(\sim T_0 + 0.65 \) s
- >1 GeV emission starts at \(\sim T_0 + 0.7 \) s
- 31 GeV photon at \(\sim T_0 + 0.83 \) s
- Highest from a SGRB
- Extended HE emission
Spectroscopy of GRB 090510

PL component in addition to phenomenological Band Spectrum

$E_{\text{max}} = 3.43 \text{ GeV}$

$E_{\text{max}} = 30.5 \text{ GeV}$
UHECR Signature in GRB Emission

UHECR acceleration in magnetic field and interactions may provide γ ray signature from GRBs, specially in Fermi LAT

- Synchrotron radiation and associated e^+e^- cascade radiation
- Photohadronic interactions with observed keV - MeV γ rays and cascade emission

GRB 080916C

- Very high jet bulk Lorentz factor reduces photohadronic cooling
 - Could work in other bright GBM bursts
 - A γ cutoff in HE spectrum would be an indication
- Synchrotron cooling is dominant in high B field

Razzaque, Dermer, Finke & Atoyan, arXiv:0811.1160
Particle acceleration in the forward shock B field

Cooling is dominated by synchrotron radiation in the same B field

- Fast cooling $\gamma_m > \gamma_c$ or $\nu_m > \nu_c$
- All break frequencies evolve with time as the B field (and Γ) does
Synchrotron Radiation from GRB Jets

- Particle acceleration in the forward shock B field
- Cooling is dominated by synchrotron radiation in the same B field

Injection spectrum

- $dN/d\gamma$
- γ_m, γ_c, γ_{sat}
- $t^{-\delta}$
- γ^{-p}, γ^{-p-1}

Cooled spectrum

- $t_{syn} = t_{dyn}$
- $t_{syn} = t_{acc}$

Synchrotron spectrum (slow cooling)

- F_v
- $\nu^{1/3}$, $\nu^{-(p-1)/2}$
- $t^{-\lambda}$, $t^{-\eta}$

Minimum LF

Cooling LF

Saturation LF

- Fast cooling $\gamma_m > \gamma_c$ or $\nu_m > \nu_c$; Slow cooling $\gamma_m < \gamma_c$ or $\nu_m < \nu_c$
- All break frequencies evolve with time as the B field (and Γ) does