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• We know 10 such DNS systems to date

• Orbital motion of binary pulsar PSR 1913+16 showed first proof for 
existence of gravitational waves

• Measurement of (at least two) relativistic effects allows determination of 
individual neutron star masses

• Tests of strong-field gravity:  GR vs. alternative theories

• Prime candidate for ground-based gravitational wave detection (LIGO, 
GEO600,...)

• Nucleosynthesis:
1. dynamical ejecta (cold decompression)
2. neutrino-driven winds (accretion disks, central object remnant)

• Prime candidate for central engine of (short) Gamma-ray bursts
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a) physics

• (strong) gravity

important for

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

• strong interaction/nuclear physics - supra-nuclear EOS
- nuclei inner disk regions
- ...

very sensitive to 
equation of state

(from Rosswog et al. 1999)

ζ ≡ GM

cR
≈






0.5 for bh
0.3 for ns
10−6 for Sun
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• magnetic fields - additional pressure
- stability central object against collapse
- transport of angular momentum
- enhance mass loss

• hydrodynamics - fluid instabilities/turbulence
- transport of angular momentum
- ...

• weak interactions/
   neutrinos

- ν-cooling 
- electron fraction
- ν-driven winds
- nucleosynthesis

• nuclear reactions
- disk evaporation 
- decay radioactive nuclei
- r-process
- mini-super-/kilonova
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b) Numerics

• space-time evolution: 
   stable and accurate solution of
   Einstein equations

• GR initial conditions - “garbage in, garbage out”

• very broad range for equation of state 

• ν-transport in 3D

• resolve relevant (magneto-) 
   hydrodynamic length scales

- transport angular momentum
- collapse time scale
- GRB mechanism ...

• Courant-Friedrichs-Lewi 
   stability criterion ∆t <

∆x

cs
= 10−6 s

(
∆x

1 km

) (
0.3 c

cs

)
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• How to ensure numerical 
  conservation of physically 
  conserved quantities ?

- binary dynamics is VERY sensitive to
  angular momentum distribution
- small amounts of mass can pick up
  large amounts of angular momentum !

• “numerical vacuum” - several Eulerian calculations have
  “vacuum” densities >> WD densities

compact binary mergers are prime examples
 of multi-scale and multi-physics problem !!!

no single model can explain 
the various aspects reliably

for now have to rely on “patchwork picture”
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simple estimates (Troja et al. 2010):

• assume deformation of a fluid star
   (this will overestimate the critical separation!)

ε =
δR1

R1
≈

(
m2

m1

) (
R1

a

)3

• separation εcrit is reached: acrit ≈ 100
(

m2

m1

)1/3

ε−1/3
c,−6 Rns

• “tidal grinding phase” until merger:

τtg < 62 min
(

Rns

10 km

)4

ε−4/3
crit,−6

(
1.4 M"

mns

)3
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• “tidal grinding” triggers a sequence of  “magnetar-like” flares up to merger

IF one of the neutron stars is highly magnetized:

• starting ~ 1 minute before merger

• flares will increase in energy ∆E ∝ (δR)2 ∝ a−6 ∝ 1
(tmerge − t)3/2

assume 1.4 Msol star + companion



3.2 Merger and baryonic pollution

(Price & Rosswog, Science 312, 719, 2006)

MAGMA simulation includes:
• 3D magnetohydrodynamics
• nuclear equation of state
• opacity-dependent neutrino
   cooling
• self-gravity + gravitational 
  wave emission
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Lν ~ 2 x 1053 erg/sν-Luminosities:~20 MeV~ 4 MeVtemperatures:

(1 MeV= 1010 K)

grav. binding energy
Egrav ~ 30 MeV/bar.

neutrino-driven winds are 
likely to be important !!

“baryon-free”: can ultra-relativistic 
outflow be launched here???
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• explore:  outflow formation vs.  neutrino-driven wind

• step 2: map results on 2D grid

• step 1: simulate early phases with 3D MAGMA code
(Rosswog&Price 2007)

• step 3:  follow long-term evolution with supernova 
              neutrino-hydrodynamics code VULCAN 2D

(Burrows et al. 2007)

• 3D Smooth Particle Hydrodynamics
• Magnetic field evolution via Euler potentials
• nuclear equation of state (Shen et al. 1998)
• opacity dependent cooling via neutrinos
• no heating by neutrinosMAGMA

• 2D “ALE” (Adaptive Lagrangian Eulerian)
• nuclear equation of state (Shen et al. 1998)
• state-of-the-art neutrino physics (emission, 
  scattering, absorption)

• during evolution: “Multi-group Flux Limited
  diffusion”
• post-processing: “Multi-angle” or Sn-method

• heating via neutrino absorption & annihilation

VULCAN 2D

Our approach (Dessart,  Ott, Burrows, Rosswog, Livne,  ApJ 690, 1681, (2009))



neutrino loss and gain at t= 60 ms: 

MGFLD: Multi-group flux-limited diffusion

Sn:          short-characteristic method

major “gain regions”:
- outer ns-crust
- funnel region
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strong, non-relativistic (~0.1c) baryonic outflow,
no relativistic outflow possible as long as the 
central neutron star is alive!

 

mass loss:

➡ driven by:

 
➡ rate:

νe + n → e + p

ν̄e + p → e+ + n

dM

dt
∼ 10−3 M"

s

dM/dt poss. enhanced substantially by magnetic field

What happens after collapse to bh?
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3.3 Can the central object avoid a collapse?

(from Rosswog 2007)

• merger produces differentially rotating remnant

very efficient 
in stabilizing

 against collapse!

• Demorest et al. Nature 467, 1081(2010):  Shapiro delay for J 1614-2230

Mns = 1.97± 0.04M!, i.e. Mns,max > 2M!
(cold, non-rotating!)

• Shibata & Taniguchi (2006): threshold mass Mthresh ≈ 1.35Mns,max> 2.7M!

Mc.o. < Mthresh : direct collapse
> Mthresh : ”hypermassive neutron star”
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        many/most systems avoid direct collapse!

Could enough mass be lost to prevent a final collapse?

Mns, max= 2 
      Mloss= 0.4

for Mns= 1.25:

Mns, max= 2.2
    Mloss= 0.1

required
baryonic 
mass loss

neutron star mass
(using grav. binding energy of Lattimer&Yahil 1989,
  from Rosswog, Rev.  Mex.  A. A. 27, 57, 2007,)

assumed max. 
ns masses
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mass loss mechanisms:

- dynamical mass loss (Ye~0.05): 10−3 − 10−2M"

- neutrino-driven winds (enhanced by B-fields;  Ye~0.2-0.5): ∼ 0.1M!

- viscous disk evolution (Beloborodov 08, Metzger+08, Lee+09):
   - ν-cooling becomes inefficient: advective disk
    - nucleons recombine into nuclei

disintegration of most of late-time disk 
(Ye~0.3) ≈ 0.3Mdisk(t0)

low-mass systems could possibly 
survive, “magnetar” formation cannot 
be excluded
(see talks O’Brien, Metzger this conference)



3.4 Late-time activity

gravitational torques launch matter
 unavoidably onto “fallback orbits”!

(∼ 0.02− 0.08M!)
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also the much longer
 
 c) “fallback time scale” (Rosswog 2007)
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“unbound”

“bound”
fallback time can be calculated analytically:

can produce fallback 
for minutes to hours

really flares?

(Rosswog, MNRAS 376, l48, 

mech. fallback 
luminosity
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Puzzle:

- magnetar-like remnants are plausible explanations for
  late-time activity

- BUT: how to avoid the baryonic pollution to produce 
          the relativistic outflow in the first place???



4. Summary
• ~ 1 minute before merger neutron star suffers a 

   “tidal grinding phase”

• details complicated, but general prediction robust
• IF at least one neutron star is highly magnetized, this
   should produce a sequence of “magnetar-like” flares 
   with increasing strength

• (at least before collapse to a bh) neutrinos drive a very

   strong baryonic wind, that “pollutes” the most promising
   region to launch a burst; hard to see how 
   ultra-relativistic could be launched

• low mass binary systems could possibly survive merger without bh

   formation: “magnetar-like” object

• late flares remain an open issue



• compact binary mergers are a good model,
   BUT: stay open-minded, 
           whatever is not forbidden by physics will
           happen (at some rate)!


