GRBs with Fermi -The implications of the high energy observations

Tsvi Piran

The Hebrew University, Jerusalem

(E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D. Guetta, D. Wanderman, P. Biniamini)

• Fermi's new feature is the fantastic spectroscopic range.

The Questions:

- What is the emission mechanism of the prompt GRB emission?
- What is the origin of the high energy emission?
- What is the Lorentz factor of the emitting regions?

The expectations

- We observe prompt (sub) MeV emission.
- We expect a second high energy Inverse Compton component.

$$v_{ic} = \gamma^2 v_{MeV} \iff 5GeV = (\gamma/100)^2 500 keV$$
$$v_{ic}F_{ic} = Y v_{MeV}F_{MeV} \iff (vF)_{5GeV} = Y(vF)_{500keV}$$
$$Y = \gamma^2 \tau$$

A Blazar spectrum

Thursday, November 4, 2010

Fermi- H.E.S.S. Observations of a PKS 2155-304

Expectations for the prompt spectrum (e.g. Pe'er & Waxman 2004)

Thursday, November 4, 2010

HE emission from GRBs : Pre-Fermi

Fermi's observations GRB 090510

Fermi's observations GRB 080916c

Strong upper limits on the GeV emission

Upper limits for LAT vs.GBM fluence Paz Beniamini, Dafne Guetta, Ehud Nakar and Tsvi Piran (see poster 4.02)

Thursday, November 4, 2010

What is the prompt emission mechanism?

The origin of the prompt (sub-MeV) emission is not clear:

- •Synchrotron
- •Synchrotron Self Compton
- •Inverse Compton of external radiation field?
- •τ~1 Comptonization

Limits on Synchrotron Parameters

$$v_{ic} = \gamma^2 v_{MeV} \iff 5GeV = (\gamma/100)^2 500 keV$$
$$v_{ic}F_{ic} = Y v_{MeV}F_{MeV} \iff (vF)_{5GeV} = Y(vF)_{500keV}$$
$$Y = \gamma^2 \tau$$

This rules out the $\gamma_e \approx 100$ electrons in the region that emits the prompt γ -rays Or strong B

Fermi's α distribution (GCN parameters)

• The synchrotron "line of death" problem persists!

The origin of the prompt emission is not clear:

Synchrotron – "line of death" + GeV limits (high B so that v_{sa} is at the keV range - Granot, Piran, Sari 99 ?, Suppress IC component)
Synchrotron Self Compton
Inverse Compton of external radiation field?

• $\tau \approx 1$ Comptonization

SSC or IC ?

• P. Kumar E. McMahon, S. D. Barthelmy, D. Burrows, N. Gehrels, M. Goad, J. Nousek and G. Tagliaferri

Thursday, November 4, 2010

Limits on SSC prompt emission

Rules our regions in the Parameter phase space

Thursday, November 4, 2010

The origin of the prompt emission is not clear:

•Synchrotron – "line of death" + GeV peak

•Synchrotron Self Compton – GeV emission is too weak

Inverse Compton of external radiation field? – No reasonable source of seed photons (Genet, Jacob & TP - see poster 2.06)

• τ≈1 Comptonization thermal – What is the origin of the needed mildly relativistic electrons at the right location (see however Beloborodov)

The origin of the GeV emission?

From Ghisellini et al 2010

Long Lived GeV emission

De Pasquale et al., 2010

Thursday, November 4, 2010

Delayed and long lived GeV emission

LAT bursts are the strongest GBM bursts!

Stacked Fluence of 18 strong GBM Bursts Paz Beniamini, Dafne Guetta, Ehud Nakar and Tsvi Piran (see poster 4.02)

•The average T90 fluence is insignificant above the noise.

•The average fluence between $0 \le t \le 600$ sec is 5.8 *10⁻⁶ - a 5 σ detection.

Can the forward shock synchrotron produce the observed GeV emission?

- Kumar and Barniol-Duran Yes (adiabatic)
- Ghisellini, Ghirlanda, Nava, Celloti Yes (radiative)

Standard External Shock Spectra Fan, TP, Narayan & Wei, 2008

Standard External Shock Spectra Fan, TP, Narayan & Wei, 2008

When we lower B

Shock Acceleration

But

TP & Nakar 2010, Kumar Barniol-Duran 2010

• **Cooling time = acceleration time**

=> Upper limit on synchrotron photons $\frac{m_e c^2}{\alpha} \approx 80 \,\text{MeV}$ $=> h v_{\text{max}} = 80 \,\text{MeV} \,\Gamma(t) \approx 9 \,\text{GeV} \left(\frac{t}{100 \,\text{s}}\right)^{-3/8} \left(\frac{1+z}{2}\right)^{-5/8}$

- <u>But</u> 33 GeV photon at 82 sec from GRB090902B?
- <u>Much</u> worse in radiative cooling when Γ(t) decreases much faster.

Thursday, November 4, 2010

Cooling and Confinement constrains on the Low B solution

TP & Nakar 10, Kumar Barniol-Duran 10, Waxman & Zhou 06

• Cooling - MeV < $hv_c < 100$ MeV => $f_B B > 85 \ \mu G \ (t/100)^{-1/6}$ for

• Confinement of the electrons producing 10GeV photon => B > 20 μ G (t/100)^{-1/12}

Oops - Cooling by IC

Even a modest (a few μ J) IR or optical flux will cool (via IC the GeV synch emitting electrons)

Limit on bulk Lorentz factor

Large luminosity and small emitting region, optical depth for the γ - γ -> e+e- pair production is too large to observe the non-thermal emission from GRB -> the compactness problem.

Relativistic motion (Γ **>>1) is essential to avoid the compactness problem**

$$\tau_{\gamma\gamma}(E) = \frac{3}{4} \frac{\sigma_T d_L^2}{t_v \Gamma} \frac{m_e^4 c^6}{E^2 (1+z)^3} \int_{\frac{m_e^2 e^4 \Gamma}{E(1+z)}}^{\infty} \frac{d\epsilon'}{\epsilon'^2} n\left(\frac{\epsilon' \Gamma}{1+z}\right) \varphi\left[\frac{\epsilon' E(1+z)}{\Gamma}\right]$$

$$\Gamma_{\min} \text{ can be derived using observed highest energy photon}$$

$$\Gamma_{\min}(E_{\max}) = \left[\frac{4d_L^2 A}{c^2 t_v} \frac{m_e^2 c^4}{(1+z)^2 E_{\max}} g\sigma_T\right]^{\frac{1}{2-2\beta}} \left[\frac{(\alpha-\beta)E_{pk}}{(2+\alpha)100 \text{ keV}}\right]^{\frac{\alpha-\beta}{2-2\beta}}, \qquad 090510$$

$$E=31 \text{ GeV}$$

$$\exp\left(\frac{\beta-\alpha}{2-2\beta}\right) \left[\frac{2m_e^2 c^4}{E_{\max}(1+z)^2 100 \text{ keV}}\right]^{\frac{\beta-2\beta}{2-2\beta}}; \qquad 090902B \quad E=3 \text{ GeV}$$

$$E=33 \text{ GeV}$$

$$E=33 \text{ GeV}$$

$$E=33 \text{ GeV}$$

min

Two Zone Limits on the Lorentz factor

 (Zou, Fan & Piran, 10)
 Opacity limits on Γ should take into account the possibility of a different origin of the prompt low energy γ-rays

• This reduces significantly the limits on Γ

Two Zone Limits on the Lorentz factor

 (Zou, Fan & Piran, 10)
 Opacity limits on Γ should take into account the possibility of a different origin of the prompt low energy γ-rays

• This reduces significantly the limits on Γ

Table 1: Limits on Fermi LAT busts

GRB	\mathbf{z}	$T_{90}(s)$	$\alpha_{_M}$	β_M	$E_P(MeV)$	$L_{\rm iso}~({\rm erg/s})$	$E_G(\text{GeV})$	T_G	$\Gamma_{G,\min}$ *	Γ_{\min}	ref
080916C	4.35	66	1.02	2.21	1.17	$7 imes 10^{53}$	13.22	40	221(488)	880	1
090510	0.903	0.5	0.48	3.09	5.1	$4.6 imes10^{53}$	3.4	0.5	170 (324)	1200	2
090902B	1.822	30	0.61	3.87	0.8	$3.2 imes10^{53}$	33.4	82	140 (253)	1000	3,4
090926A	2.1062	20	0.693	2.34	0.27	$4.2 imes 10^{53}$	19.6	26	174 (374)	1200	5

Shown are the low energy spectral parameters α_M , β_M and E_P as well as the luminosity, L_{iso} and the energy, E_G and time T_G of the highest energy GeV photon as well as the two zone, $\Gamma_{G,min}$, and the single zone, Γ_{min} , limits. (1) Abdo et al. (2009a); (2) Ackermann et al. (2010); (3) Abdo et al. (2009b); (4) de Palma et al. (2009); (5) Summer et al. (2010)

(5) Swenson et al. (2010)

* in bold face is the value for $\eta = 1$ and brackets is the value for $\eta = 0.01$

Fermi Ep-E_{iso}?

- Vela
- BATSE
- BeppoSAX
- Swift
- Fermi

- Vela
- BATSE
- BeppoSAX
- Swift
- Fermi

- Vela
- BATSE

- BeppoSAX
- Swift
- Fermi

- Vela
- BATSE
- BeppoSAX
- Swift
- Fermi

- Vela
- BATSE
- BeppoSA>
- Swift

• Fermi

• Vela

- BeppoSA3
- Swift
- Fermi

Conclusions

- Prompt emission mechanism
 - Not SSC (lack of high energy signature + not enough optical seed).
 - Not IC no relevant seed source (may produce some GeV emission)
 - Synch "line of death"+ Fermi limits on emitting elns Lorentz factor? - Very Strong B?
 - Mildly relativistic comptonization?
- <u>The GeV emission</u>
 - Mostly external shocks
 - No late energetic photons a prediction
 - No simultaneous strong IR or optical
- Revise lower Γ opacity estimates for LAT GRBs