HIGH-ENERGY LIGHT CURVES IN AN OFFSET POLAR CAP B-FIELD GEOMETRY

Speaker: Monica Barnard
Supervisor: Christo Venter
Co-Supervisor: Alice K Harding
Aim: Investigate the effect of different magnetospheric structures on pulsar light curves and additionally what the effect will be when incorporating an E-field to modulate the emissivity.

B-field structures:
- Static dipole
- Vacuum retarded dipole
- Offset-PC dipole (Harding & Muslimov 2011)

Geometric models:
- Two-pole caustic (TPC)
- Outer gap (OG)
- Slot gap (SG)

Implement an offset-PC solution:
- Transformation
- PC rim
- SG E-field
- Matching parameter
- Transport equation (test curvature radiation reaction – CRR)

Our studies was done on Vela!!!
OFFSET-PC FIELD

B-field expression:
- Heuristic model of a non-dipolar magnetic structure where the PCs are offset from the magnetic-axis
- Symmetric offset PCs, i.e., offset of both magnetic PCs in the same direction

\[
B'_{\text{offset},s}(r', \theta', \phi') \approx \frac{\mu}{r'^3} \left[\cos \theta' \hat{r}' + \frac{1}{2} (1 + a) \sin \theta' \hat{\theta}' - \epsilon \sin \theta' \cos \theta' \sin(\phi' - \phi_0) \hat{\phi}' \right]
\]

\[a = \epsilon \cos(\phi' - \phi_0)\]

Distortions due to retardation and asymmetric currents.

Transformation:

B-field specified in the magnetic frame, but transformed the field to the co-rotating frame to determine the PC of the neutron star for this specific B-field solution
PC rim:

Need to determine rim for new B-field
SG E-field: Corrected for GR effects (Muslimov & Harding 2003, 2004)

Low-altitude and high-altitude solutions available for offset-PC dipole

$$E_{||,\text{low}} \approx -3E_0 v_{SG} x^a \left\{ \frac{\kappa}{\eta^4} e_1 A \cos \alpha + \frac{1}{4} \frac{\theta_{PC}^{1+a}}{\eta} \left[e_2 A \cos \phi_{PC} + \frac{1}{4} \epsilon \epsilon_{3A} (2 \cos \phi'_0 - \cos(2 \phi_{PC} - \phi'_0)) \right] \cos \alpha \right\} (1 - \xi^2_*)$$

$$E_{||,\text{high}} \approx -\frac{3}{8} \left(\frac{\Omega R}{c} \right)^3 B_0 v_{SG} x^a \left\{ \left[1 + \frac{1}{3} \kappa \left(5 - \frac{8}{\eta c^3} \right) + 2 \frac{\eta}{\eta_{LC}} \right] \cos \alpha \right\} + \frac{3}{2} \theta_{PC} H(1) \sin \alpha \cos \phi_{PC} (1 - \xi^2_*)$$

Note: magnetic azimuthal angle in E-field is π out of phase with that of B-field

Match these to obtain general SG E-field over all altitudes on each B-field line

$$\eta_c(P, \dot{P}, \alpha, \epsilon, \xi, \phi_{PC})$$

$$E_{||,SG} \approx E_{||,\text{low}} \exp \left(\frac{-(\eta - 1)}{(\eta_c - 1)} \right) + E_{||,\text{high}}$$

= 0 “favourably curved” field lines

MATCHING PARAMETER (Barnard et al. 2016, submitted)
SG E-field:
Problems encountered when matching

\[E_{\parallel,SG} \approx E_{\parallel,low} \exp \left(\frac{-(\eta - 1)}{(\eta_c - 1)} \right) + E_{\parallel,high} \]
Transport Equation:
Solve transport equation using general SG E-field, on each B-field line.

$$\dot{\gamma} = \dot{\gamma}_{\text{gain}} + \dot{\gamma}_{\text{loss}} = \frac{eE_{||,\text{total}}}{mc} - \frac{2e^2\gamma^4}{3\rho_{\text{curv}}mc}$$

$\varepsilon = 0$ (thick lines), $\varepsilon = 0.18$ (thin lines)
RESULTS: Uniform emissivity (TPC model)

\(\varepsilon = 0 \)

\(\zeta = 60^\circ \)

\(\alpha = 0^\circ \)
\(\alpha = 15^\circ \)
\(\alpha = 30^\circ \)
\(\alpha = 45^\circ \)
\(\alpha = 60^\circ \)
\(\alpha = 75^\circ \)
\(\alpha = 90^\circ \)

\(\varepsilon = 0.18 \)

\(\zeta = 60^\circ \)

\(\alpha = 0^\circ \)
\(\alpha = 15^\circ \)
\(\alpha = 30^\circ \)
\(\alpha = 45^\circ \)
\(\alpha = 60^\circ \)
\(\alpha = 75^\circ \)
\(\alpha = 90^\circ \)
RESULTS: Variable emissivity (SG model)

\(\varepsilon = 0 \)

\(\varepsilon = 0.18 \)
RESULTS: Variable emissivity (vary the magnitude of the SG E-field)

Case 1: $\varepsilon = 0.18$
- Lowered minimum energy to 1 MeV
- Hard X-ray band

Case 2: $\varepsilon = 0.18$
- Increased E-field by a factor 100
- Gamma-ray band
Transport Equation:
Solve transport equation using general SG E-field increased by a factor 100.

\[
\dot{\gamma} = \dot{\gamma}_{\text{gain}} + \dot{\gamma}_{\text{loss}} = \frac{eE_{||,\text{total}}}{mc} - \frac{2e^2\gamma_e A}{3\rho_{\text{curv}}^2mc}
\]

$\varepsilon = 0$ (thick lines), $\varepsilon = 0.18$ (thin lines)
RESULTS:

Fitting model light curves to Vela data

- Used a usual chi-squared method (Breed et al. 2014, 2015)
- search the multivariate solution space for optimal model parameters

Chi-squared contour

Best fit to the data for offset-PC field: SG model for $\varepsilon = 0.15$
RESULTS:

Fitting model light curves to Vela data
Increased E-field by a factor 100

Best-fit model light curve:

Chi-squared contour

Best fit to the data for offset-PC field:
TPC model for $\varepsilon = 0$
\[\Delta \xi^2 = \xi^2 - \xi^2_{\text{opt}} = N_{\text{dof}} \left(\frac{\chi^2}{\chi^2_{\text{opt}}} - 1 \right) \]

Results:

First:

Compared the optimal and alternative models for each B-field

Second:

Compared all B-field and model combinations to the **OVERALL** optimal B-field and model combination

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Model</th>
<th>(\epsilon)</th>
<th>(\chi^2) ((\times 10^5))</th>
<th>(\alpha) (°)</th>
<th>(\zeta) (°)</th>
<th>(A)</th>
<th>(\Delta \phi_L)</th>
<th>(\Delta \xi^2_B)</th>
<th>(\Delta \xi^2_{\text{all}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static dipole B-field:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC</td>
<td></td>
<td>0.819</td>
<td>0.73^±^3</td>
<td>45^±^4</td>
<td>1.3</td>
<td>0.55</td>
<td>0.00</td>
<td>0.00</td>
<td>108.75</td>
</tr>
<tr>
<td>OG</td>
<td></td>
<td>0.891</td>
<td>64^±^5</td>
<td>86^±^4</td>
<td>1.3</td>
<td>0.05</td>
<td>8.44</td>
<td>126.75</td>
<td></td>
</tr>
<tr>
<td>RVD B-field:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC</td>
<td></td>
<td>3.278</td>
<td>54^±^5</td>
<td>67^±^5</td>
<td>0.5</td>
<td>0.05</td>
<td>723.50</td>
<td>723.50</td>
<td></td>
</tr>
<tr>
<td>OG</td>
<td></td>
<td>0.384</td>
<td>78^±^4</td>
<td>69^±^4</td>
<td>1.3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Multi-wavelength Fits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) (°)</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>63.6^±^0.07</td>
</tr>
<tr>
<td>62–68</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>44^±^4</td>
</tr>
<tr>
<td>65^±^2</td>
</tr>
<tr>
<td>88^±^2</td>
</tr>
<tr>
<td>15^±^1</td>
</tr>
<tr>
<td>55^±^10</td>
</tr>
<tr>
<td>80^±^1</td>
</tr>
<tr>
<td>3^±^2</td>
</tr>
<tr>
<td>45^±^2</td>
</tr>
<tr>
<td>71^±^2</td>
</tr>
<tr>
<td>56^±^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X-ray torus</th>
<th>RVD & TPC</th>
<th>RVD & OG</th>
<th>RVD & Symmetric SG</th>
<th>RVD & Asymmetric SG</th>
<th>RVD & OG</th>
<th>FF & Symmetric SG</th>
<th>FF & Asymmetric SG</th>
<th>FF & OG</th>
<th>RVD & PC</th>
<th>RVD & SG</th>
<th>RVD & OG</th>
<th>RVD & OPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>63.6^±^0.07</td>
<td>64</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
RESULTS: Comparison of the best-fit solutions (Pierbattista et al. 2015)
CONCLUSIONS

For an offset-PC magnetosphere:

- Therefore both the B-field and E-field have an impact on the predicted light curves.

- Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit.

- Our overall optimal light curve is for the retarded vacuum dipole field and outer gap model. But the offset-PC dipole delivers an second overall optimal fit.