The mystery of simultaneous pulsar moding in the X-ray and radio bands

Wim Hermsen^{1,2}

Collaborators:

L. Kuiper¹, J.W.T. Hessels^{3,2}, J. van Leeuwen^{3,2}, D. Mitra⁴, J.M. Rankin^{2,5}, B. Stappers⁶, G.A.E. Wright⁷, R. Basu^{4,8}, A. Szary²

¹ SRON Netherlands Institute for Space Research

² Anton Pannekoek Institute, University of Amsterdam

³ ASTRON Netherlands Institute for Radio Astronomy

⁴ National Centre for Radio Astrophysics, Ganeshhkind, Pune, India

⁵ Physics Department, University of Vermont, Burlington, USA

⁶ Jodrell Bank Center for Astrophysics, Manchester, UK

⁷ Astronomy Centre, University of Sussex, Falmer, Brighton, UK

⁸ Institute of Astronomy, University of Zielona Gora, Zielona Gora, Poland

University of Amsterdam

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

Outline

- Introduction: Discovery of synchronous X-ray and radio-mode switching in pulsar PSR B0943+10. (Hermsen et al. 2013, Science 339, 436)
- New insights (Storch et al. 2014) (New long campaign on PSR B0943+10: results under embargo; Mereghetti et al. 2016, including authors of Hermsen et al. 2013, Mereghetti et al. 2013, MNRAS 435, 2568 & Kevin Stovall +)
- Simultaneous radio and X-ray observations of PSR B1822-09: results
- Conclusions, Next Steps

The radio-mode switching PSR B0943+10

Characteristics

- P = 1.10 s
- $\dot{P} = 3.5 \times 10^{-15}$
- $\dot{E} = 1.0 \times 10^{32} \text{ erg s}^{-1}$
- $B_p = 2.0 \times 10^{12} \text{ G}$
- $T = 5.0 \times 10^6 \text{ yr}$
- nearly aligned rotator

LOFAR 140 MHz

• mode switching between radio B(right) and Q(uiet) modes

PSR B0943+10: also a moding Precurser (PC)

140 MHz

W. Hermsen, Pulsar workshop, Goddard, June 2016

GMRT 320 MHz

X-ray – Radio campaign on PSR B0943+10

- Simultaneous observations for ~140 ks in November/December 2011: XMM-Newton with LOFAR, GMRT and Lovell
- Discovery of Synchronous X-ray and Radio Mode Switches

(Hermsen et al. 2013)

- When PSR B0943+10 switches from the radio B(right) mode to the radio Q(uiet) mode the X-ray flux (in **anti correlation)** more than doubles (times 2.45)!
- In the radio Q mode thermal pulsed X-ray emission is added to the X-ray flux in the B mode.

Discovery of Synchronous X-ray and Radio Mode Switches

XMM-Newton EPIC PN + MOS-1 & MOS-2

Detection of pulsed X-ray emission in radio Q mode B mode: 3-σ upper limit pulsed fraction 40-50%, Mereghetti et al. 2013

Difference between X-ray emissions in radio B and Q mode is addition of pulsed X-ray emission in Q mode

X-ray pulse is aligned with radio main pulse with precursor

PSR B0943+10: X-ray spectrum **pulsed emission** in radio **Q-mode**

•
$$N_{H} = 4.3 \times 10^{20} \text{ cm}^{-2}$$
 (fixed)

- BB: kT = 0.319 ± 0.012 keV 3.70 ± 0.14 MK
- F_{BB} (0.5-8 keV)= (7.8 ± 1.6) 10⁻¹⁵ erg cm⁻² s⁻¹ (unabsorbed)

Thermal pulsed emission

X-ray spectral characteristics

Mereghetti et al. 2013 reanalized our observations and preferred: pulsed emission non-thermal, unpulsed emission thermal

Unanswered questions, e.g.:

 The polar cap region is viewed continuously: how to produce a thermal component in the Q mode, consistent with 100% pulsation?

• What is causing the simultaneous X-ray radio mode switch?

Geometry as constrained by Deshpande & Rankin 2001

Unanswered questions, e.g.:

 The polar cap region is viewed continuously: how to produce a thermal component in the Q mode, consistent with 100% pulsation?

Magnetic beaming

Geometry as constrained by Deshpande & Rankin 2001

Magnetic beaming

References e.g.

- Pavlov et al. 1995, Rajagopal et al. 1997, Zavlin & Pavlov 2002
- Ho et al. 2003, 2004, Adelsberg & Lai 2006

-- Storch et al. 2014: addressed (in particular) the pulse profile and the high pulsed fraction of PSR B0943+10 in the Q mode.

→ Magnetic beaming or a displaced dipole geometry

-- PSR B0943+10 is old (5Myr), but $B_p = 2.0 \times 10^{12}$ G is sufficiently strong to cause beaming along the direction of B field

Pencil beam + broad fanlike beam

Magnetic beaming for the nearly aligned geometry ofPSR B0943+10(Deshpande & Rankin 2001)

For a magnetized, partially ionized hydrogen atmosphere model (Ho et al. 2008)

SRON

Magnetic beaming for the nearly aligned geometry ofPSR B0943+10(Deshpande & Rankin 2001)

For a magnetized, partially ionized hydrogen atmosphere model (Ho et al. 2008)

Magnetic beaming for the nearly aligned geometry ofPSR B0943+10(Deshpande & Rankin 2001)

For a magnetized, partially ionized hydrogen atmosphere model (Ho et al. 2008)

SRON

Unanswered questions, e.g.:

 The polar cap region is viewed continuously: how to produce a thermal component in the Q mode, consistent with 100% pulsation?

→ Magnetic beaming

• What is causing the simultaneous X-ray radio mode switch?

Geometry as constrained by Deshpande & Rankin 2001

Radio-mode switching a local or global phenomenon ?

Observational Evidence for Rapid, Global, Magnetospheric Changes:

- Mode switching and correlated v changes for PSR B1931+2421 (Kramer et al. 2006, Science 312, 549)
- Similar behaviour for PSR J1841-0500 and PSR J1832+0029 (Camilo et al. 2012; Lorimer et al. 2012)
- Mode changing, nulling, profile-shape changes likely due to change in magnetospheric particle current flow (Lyne et al. 2010, Science 329, 408)

Local phenomenon:

- Three modes of pulsar inner gap (Zhang et al. 1997)
- Partially Screened Gap model (Gil, Melikidze, Zhang, 2006; Szary, Melikidze, Gil, 2015)

Theoretical Support for Rapid, Global, Magnetospheric Changes

- Mode switching is global: a range of Quasi-stable magnetospheric configurations is expected (Goodwin et al. 2004, Timokhin 2006)
- The non-linear system is proposed to suddenly switch between specific states, each having a specific emission beam and spin-down rate (Timokhin 2010)

X-ray spectral characteristics

Data from a new long X-ray – radio campaign on PSR B0943+10 is being analysed

New campaign: Mode-switching Pulsar PSR B1822-09

Characteristics: PSR B0943+10	PSR B1822-09
• P = 1.10 s	0.77 s
• $\dot{P} = 3.5 \times 10^{-15}$	5.2 x 10 ⁻¹⁴
• E = 1.0 x 10 ³² erg s ⁻¹	4.5 x 10 ³³ erg s ⁻¹
• $B_p = 2.0 \times 10^{12} G$	6.4 x 10 ¹² G

- $T = 5.0 \times 10^6 \text{ yr}$ $2.3 \times 10^5 \text{ yr}$
- nearly aligned rotator

nearly orthogonal rotator, or nearly aligned? (Malov, Nikitina 2011)

• PSR B1822-09 also switches between radio B(right) and Q(uiet) mode

PSR B1822-09 @ 624 MHz (GMRT)

Mode switching

- 1: Precursor
- 2: Main pulse
- 3: Interpulse

Typical mode durations less than 5 minutes

SRON

PSR B1822-09: XMM-Newton observation times (ks) September, October 2013, and March 2014

Date /CCDs	10/09 2013	18/09 2013	22/09 2013	28/9 2013	30/09 2013	06/10 2013	10/03 2014	12/03 2014	Mode
PN	23.1	21.1	24.8	21.1	27.9	21.1	21.1	34.1	Large Window
MOS-1	24.8	22.8	26.5	22.8	29.6	22.8	22.8	35.8	Small Window
MOS-2	24.8	22.8	26.5	22.8	29.6	22.8	22.8	35.8	Small Window

Simultaneous radio observations with the WSRT and partly Lovell and GMRT

Total XMM-NewtonPN194.3 ksMOS-1209.3 ksMOS-2209.3 ks

Maximum likelihood analysis of X-ray skymaps:

Two sources are detected separated by $5.1"\pm0.5"$

- A soft-spectrum source at the position of PSR J1822-09, dominating below 1.4 keV
- A hard-spectrum source dominating above 1.4 keV

PSR J1822-09; 15

X-ray timing analysis (PN + MOS1&2)

Discovery of X-ray pulsation in energy band 0.4-1.4 keV

Phase folding with ephemeris from Jodrell Bank: events selected within 15" from pulsar position

 Broad sinusoidal X-ray pulse shifted in phase by 0.094 ± 0.017 with respect to radio main pulse (0.0)

9.6 o detection significance

X-ray timing analysis (PN+MOS1&2)

Phase-resolved spatial analysis: <u>background subtracted profile</u>

- Pulsed fraction for 0.2-1.6 keV: ~35%
- No indication for X-ray pulse from radio interpulse

PSR B1822-09

Phase-resolved spatial analysis: all counts from pulsar

Pulse detections from 0.2 to 1.6 keV

No evidence for pulse shape variations over this X-ray band

PSR B1822-09

Pulsed fractions determined in 3-dimensional Maximum Likelihood analysis.

Events sorted in 3-D space: two sky coordinates + pulsar phase

Pulsed fraction increasing from ~15% at 2 keV up to ~60% at 1 keV

→ Spectrum pulsed emission much harder than that of unpulsed emission

PSR B1822-09: X-ray mode switching ?

PSR B1822-09, 5.55 hrs observing with the WSRT

S/N of detection in bins of 10 s

SRON

PSR B1822-09: phase distributions for Q and B intervals Phase-resolved spatial analysis for 10 bins

count rates B O

Kolmogorov-Smirnov test: probability that the two profiles are drawn from the same parent distribution is 97%

No significant difference in:

- pulse shape and flux of pulsed emission
- flux of unpulsed emission

0.4-1.4 keV

No evidence for mode switching

∆ count rate Q-B

PSR B1822-09, WSRT observations

Duration mode intervals in bins of 10s: ~ 10 s to ~ 15 minutes

For PSR B0943+10 we had durations of ~0.5 to ~8 hours

Spectral analysis

- Distance PSR B1822-09:
 - -- Upper limit 1.9 kpc (Johnston et al. 2001), before Sagittarius – Carina arm
 - -- DM = 19.9 pc cm⁻³, $N_{H} = 6.1 \times 10^{20} \text{ cm}^{-2}$
 - -- Often quoted d~1 kpc (e.g. Zhou et al. 2005).
- N_H at ~1.9 kpc is ~3 10^{21} cm $^{-2}$
- N_H is in initial analysis treated as free parameter

PSR 1822-09: Total-emission spectrum, fit model $BB_{cool} + BB_{hot}$ (BB₁ + BB₂) (unabsorbed)

• Best fit: $BB_1 + BB_2$; $\chi_r^2/v = 1.14/28$, • $N_{H} = (2.40^{+0.43}_{-0.41}) \ 10^{21} \ cm^{-2}$ • BB₁: kT₁ = 0.083±0.004 keV (T=0.96 MK) • $R_1 = (2039^{+427}_{-332}) m (d = 1 kpc)$ • F_1 (0.5-2 keV)= (3.2 ± 0.2) 10⁻¹⁴ erg cm⁻² s⁻¹ (unabsorbed) • BB₂: $kT_2 = 0.187^{+0.026}_{-0.023}$ keV (T=2.2 MK) • $R_2 = (98^{+59}_{-25}) m (d = 1 kpc)$ • F_2 (0.5-2 keV)= (6.5 ± 1.1) 10⁻¹⁵

Similar BB-fits three musketeers: Geminga, PSR B0656+14 & PSR B1055-52

W. Hermsen, Pulsar workshop, Goddard, June 2016

erg cm⁻² s⁻¹ (unabsorbed)

PSR B1822-09: cartoon, consistent with spectral and timing analysis

Broad cool pulses MP + IP(~75% of M)	Narrow hot pulses MP + IP($\sim 15\%$ of M)	Summed total profile
kT ≈ 0.083 keV	kT ≈ 0.187 keV	Shaded area is detected pulse above flat 'unpulsed' level (containing contributions
R ≈ 2000 m	R ≈ 90 m	of underlying cool and hot pulses)

Detection of PSR B1822-09 with Fermi LAT?

Fermi 4 August 2008 – 9 December 2015

Extended Jodrell Bank ephemris

Energy-dependent aperture (68% source counts)

X-ray maximum at phase 1.094 ± 0.017

 2.7σ detection, or 0.66% chance probability

 γ -ray maximum at phase 0.92 ± 0.05 shifted 3.3 σ w.r.t. X-ray maximum

How to reconcile X-ray characteristics with an orthogonal geometry as concluded from radio characteristics ? Impact angle small

- PSR B1822-09 has $B_p = 6.4 \times 10^{12} \text{ G}$
- Magnetic beaming?
 - If so, then:
 - -- Hot (2.2 MK) X-ray emission from primary spot (main pulse) beamed in our direction (R \approx 90 m)
 - -- Hot (2.2 MK) X-ray emission from antipodal spot (inter pulse) (mostly) beamed away from us
 - -- Cool (0.96 MK) unpulsed emission seen from both poles (R \approx 2km), but ${\sim}30\%$ more from MP than from IP

Isotropic thermal emission from both poles?

X-ray pulsed fraction 0.8 – 1.6 keV $~\sim 60$ % Hot pulse is nearly 100% pulsed

if luminosities primary and antipodal spots equal: pulsed fraction ~9%

Isotropic thermal emission from both poles?

X-ray pulsed fraction 0.8 – 1.6 keV $~\sim 60$ % Hot pulse is nearly 100% pulsed

If luminosity antipodal spot half of luminosity primary pole: pulsed fraction ~41%

Short summary

- PSR B1822-09 has been detected with XMM-Newton with average pulsed fraction ~35% (0.4-1.4 keV), and 60-65% for 0.85-1.6 keV
- The pulse profile is sinusoidal; maximum at ~0.1 phase from the peak of the radio main pulse.
- For PSR B1822-09 as well as for PSR B0943+10 the X-ray pulse profiles difficult to reconcile with radio-derived geometries: magnetic beaming
- X-ray emission from PSR1822-09 can be explained as emission from opposite poles, each with cool (T≈1MK, R≈2 km) and hot (T ≈ 2.2 MK, R≈100m) components.
- There is no evidence for simultaneous X-ray-radio mode-switching by PSR B1822-09. What causes this difference with PSR B0943+10?
- We still do not know what causes X-ray mode switching seen for PSR B0943+10 (local vs global ? More insight from new long campaign on PSR B0943+10 ?)

New campaign: Mode-switching Pulsar PSR B0823+26

Characteristics: PSR B0823+26

- P = 0.53 s
- $B_p = 9.8 \times 10^{11} \text{ G}$
- $T = 4.9 \times 10^6 \text{ yr}$
- Distance ~340 pc
- **orthogonal** rotator ?
- PSR B0823+26 also switches between radio B(right) and Q(uiet) mode (nulling?) Mode durations minutes to several hours

XMM-Newton 150 ks + GMRT

Sobey et al. 2015; LOFAR

Thank you for listening!

