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AGN physics in the age of Fermi 

Fermi Summer School 
Lewes, DE, 13-17 September, 2010  

  Outline 
1. Radio Galaxies, Blazars, and Unification 
2. Blazar Sequence 
3. SED: Two Component Paradigm 
4. Jet Physics: γγ opacity and synchrotron/SSC model 
6. External Compton scattering processes 
7. Variability 
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1 year Fermi GeV sky 

  LAT Bright AGN Sample (LBAS); First year LAT AGN Catalog (1LAC) 
LBAS: 3 month source list: 2008 Aug 4 – Oct 30 
1LAC: 1 year catalog: 2008 Aug 4 – 2009 July 4       3EG  (EGRET): 

10 >10σ |b|>10° sources  
66 >5σ blazars 

LBAS: subset of 0FGL 
  w/ 205 sources 

TS >100 (>10σ) 
106 |b|>10° sources 
assc. w/ AGNs 

1FGL TS >25 
1451 sources  
1043 |b|>10° sources 

1LAC 
TS >25 (> 4.1σ) 
671 assc. w/ 709 AGN 
(663 hi-conf. associations) 
(300 BL Lacs, 296 FSRQ, 41 other 
AGN, 72 unknown) 

Fermi AGNs 

2FGL TS >25 
1888 sources             832 AGNs (+268 candidates) 
114 Pulsars              60 SNR/PWNe 
593 unaccounted     7 others 

2LAC 360  FSRQs    420 BL Lacs (~60% with known z) 
200 of unknown type      ~20 other AGN 

2 year Fermi GeV sky 
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Classifying Fermi AGNs 

  Radio: FR1 vs FR2 
  Optical: FSRQs vs. BL Lacs 
  SED; (“synchrotron-peaked”) 

 LSP (νpk
syn < 1014 Hz),  

 HSP (νpk
syn > 1015 Hz) 

 ISP 

Abdo et al. 2010, ApJ, 710, 1271  

LSP 

HSP 

Essentially all FSRQs are LSPs 

Mrk 421 

PKS 1510-089 



(Urry and Padovani 1995) 

AGN Unification Paradigm 



γ-Ray Galaxy Luminosity 

Fermi blazar divide 
(Ghisellini et al. 2009) 

Misaligned AGNs 
(host galaxies of blazars) 

Star forming galaxies 

Dermer                                         Fermi Summer School                        31  May 2011 
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PKS 1510-089 
z = 0.361 

Spectral Index Distribution 



Blazar Sequence 

  Searching for the 
Hertzsprung-Russell 
Diagram in blazar 
studies 

  Inverse correlation 
between Epeak and 
luminosity 

  Cooling model with 
external radiation for 
FSRQs  (Ghisellini et al. 
1998) 

  Selection biases from 2 
Jy FSRQs (Wall & 
Peacock catalog), 1 Jy 
BL Lac (radio selected), 
and Einstein Slew 
Survey (X-ray selected) 
(Giommi et al. 1999; 
Padovani et al. 2003, 
Padovani 2007) 

Fossati et al. (1998) 
Fossati et al. (1998) 



Dermer                                              Fermi Summer School                      May 31 -June 10 2011 10 

RLNL Sy 1s 
PMN J0948+0022 
z=0.585 

Abdo et al. 2009, ApJ, 699, 976  

Understanding the Blazar Sequence 
  Inverse correlation 

between Epeak and 
luminosity (Fossati et al. 
1998) 

  Cooling model with 
external radiation for 
FSRQs  (Ghisellini et al. 
1998) 

  Origin of the sequence 
–  Galaxy evolution 

through reduction of 
fuel from surrounding 
gas and dust (Böttcher 
and Dermer 2002) 

–  BZ effect 
 (Cavaliere and d’Elia 
2002) Foschini et al. 2009 

arXiV 0908.3313 



Spectral Energy Distributions of Blazars: Two Component Paradigm 

Mrk 501, z = 0.033 

PG 1553+113, z < 0.75 
HST: z~0.40-0.43 

3C 279 
z = 0.538 

Abdo, et al. 2010, Nature, 463, 919  

Abdo, et al. 2010, ApJ, 708, 1310  

Abdo, et al. 2009, ApJ, 699, 817  

3C 454.3  
z = 0.859 

1 MeV 1048 erg/s 

Mrk 421, z = 0.031 



Leptonic jet model:  
 Nonthermal synchrotron paradigm 
 Associated SSC and EC component(s) 
 Location of emission site 

Hadronic jet model: 
 Secondary nuclear production  
  pN → πο, π± → γ, ν, n, e± 

 Proton and ion synchrotron radiation  
  pB → γ 
 Photomeson production  
  pγ → πο,π± → γ, ν, n, e± 

High energy γ-ray component from γγ′ → e± → γ by 
Compton or synchrotron processes  
Neutrons escape to become UHECRs 

Nonthermal  γ rays ⇒ relativistic particles + 
intense photon fields 



Synchrotron/Compton  
Leptonic Jet Model 

Accretion  
Disk 

Γ	



Γ	



θ	



SMBH 

Relativistically 
Collimated  
Plasma Jet 

Observer 

BLR clouds 

Dusty Torus 

Ambient  
Radiation  
Fields 

Ω	



BL Lac vs. FSRQs 
  Target photons for scattering 
  Accretion regime 

Blob Formalism 

Energy Sources: 
  1. Accretion Power 
  2. Rotation Power 

Supermassive Black Holes 

Identifying hadronic emissions 



Doppler Factor 



Variability and Source Size 

Variability timescale implies maximum emission region size scale 

rb=r´b 

Spherical blob in comoving frame 

Γ	



Doppler Factor 

Source size from direct observations: 

Source size from temporal variability: 



Variability and Source Location 

Variability timescale implies engine size scale, comoving size scale factor ≈Γ larger and 
emission location ~Γ2 larger than values inferred for stationary region 

Rapid variability by energizing regions within the Doppler cone 

x 

Γ	



1/Γ	





Energy Fluxes,  
Blobs and Blast Waves 

Total Energy Flux: 

Blob and blast wave 
framework are 
equivalent for opacity 
calculations 

Blob (off-axis jet model) vs.  
Blast Wave (observer within jet cone) 

Measured: z (⇒ dL), νFν flux, tv  
and jet angle θj for blob model 

Spectral Energy Flux: 



Internal Radiation Fields 

Instantaneous energy flux Φ (erg cm-2 s-1); variability time tv, redshift z 

Blob: 

Blast Wave: 



Internal energy density uʹ′ = uʹ′γ/εe implies a jet magnetic field  

εe is fraction of total energy density in nonthermal electrons assumed to 
be producing the γ rays 

εB is fraction of total energy density in magnetic field 

Internal Magnetic Fields and Power 

Apparent Jet Power 

Absolute Jet Power 

2 



3 month Fermi LAT data 

>200 MeV 

1 Year Fermi LAT data 

10-100 GeV 



γγ Opacity : δ-function approximation for Blob 



Minimum Doppler factor approximation for Blob 

Minimum bulk Lorentz factor:  



γγ opacity and Γmin for PKS 2155-304 

•  Code of Finke et al. (2008) 
•  Includes internal γγ opacity but not 
pair reinjection 
•  Sensitive to EBL model 
•  Fit to 2006 flare 

z = 0.116, dL = 1.65×1027 cm  

tv= 300 t5m s 

Solve iteratively, quickly converges 



Synchrotron Self-Compton Model 

Basic tool is one-zone synchrotron/SSC model with synchrotron self-
absorption and internal pair production 

Even this lacks pair reinjection; multiple self-Compton components 

Deducing source redshift from high-energy spectra requires both good 
spectral model and good EBL model 

What portion of synchrotron spectrum should be fitted? 

Synchrotron/SSC model: Best fit model; parameter studies; extracting 
underlying electron distribution; variability analysis 



Synchrotron/SSC Modeling 

Approximations (in the one-zone model) 

1.  δ-function approximation 
 zero-fold for synchrotron; 1 fold for SSC 
 Take KN effects into account by terminating integration when  
  scattering enters the KN regime 
 Useful for analytic results; equipartition estimates; jet power  
  calculations 
   

2.  Uniform approximation: B, δD, and R’ 
 a. Integrate elementary synchrotron emissivity over electron  
       γ-factor distribution (assumed uniform throughout sphere) 
 b. Average synchrotron spectrum over blob to get target photon 
  spectrum 
 c. Compton-scatter synchrotron photons using (isotropic) Jones 
  formula, valid throughout Thomson and KN regimes 
 Provides accurate absolute power estimates (photon, particle, B-field) 
  given observing angle 
  for blazars, Γ≈δD; for radio galaxies inferred from observations 



Determine electron distribution from nonthermal synchrotron spectrum 

Synchrotron Self-Compton Modeling  

Integrate electron spectrum over 
Crusius-Schlickeiser (1986) 
function to get accurate 
synchrotron emissivity; 
See Finke et al. (2008) 

Compton kernel in head-on 
approximation for SSC (Finke et al. 
2008; Dermer et al. 2008 

Spatially-averaged emission 

Synchrotron self-absorption for 
homogeneous sphere 
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γγ opacity and Γmin for PKS 2155-304 

Model δD B  
[mG] 

tvar 
[s] 

Lj 
[1047 

 erg s-1] 

6 895 2.5 30 4.5 

8 390 3.0 300 2.7 

16 261 81 30 0.5 

18 139 57 300 0.4 

Lower EBL 

(γ′min = 100 ) 

  Radio galaxy core emission well fit by 
sync./SSC model  with δ ≈ Γ ≈ few  

  The δ-unification problem 
 -- Decelerating Jet Model  
  (Georganopoulos & Kazanas 2003) 

 -- Spine and Sheath Model 
  (Ghisellini et al. 2005) 
 -- Colliding Shell Model 

 Standard one-zone synchrotron/SSC model 

Doppler factor δ >> 100 during flaring episodes 



NGC 6251: FR1 MAGN 

Migliori et al. 2011 
Perley et al. (1984) 



  First resolved extragalactic 
GeV source (after LMC) 

Cen A Core and Lobes 

10 times more energy in nonthermal  
protons/hadrons as electrons 



FSRQ Modeling 

At least three additional 
spectral components: 
 Accretion disk 
 EC Disk 
 EC BLR 

External radiation field 
provides a new source of 
opacity; need to perform 
Compton scattering and γγ 
opacity self-consistently 

Opacity spectral break at a 
few GeV   

Dermer et al. (2009) 
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No strong evolution of Eb is found 

The Peculiarly Constant GeV Spectral Break in 3C 454.3 
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Intrinsic spectral break in electron 
energy distribution with Compton-
scattered accretion disk and broad line 
region radiation (Finke & Dermer 2010) 

Robust solution, independent of 
dissipation radius, within BLR with 
wind-density profile (disk-wind) 

γγ attenuation from H (13.6 eV) and He 
II (54.4 eV) recombination radiation 
deep within the BLR (Poutanen & Stern 
2010) 

Consistency of synchrotron and 
Compton-scattered radiation spectrum 
with external photon field?  

Finke and Dermer (2010) 

Models for Spectral Break 
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Bonnoli	
  et	
  al.	
  (2009)	
  
GALEX	
  and	
  UVOT	
  observa>ons	
  of	
  strong	
  Ly	
  α:	
  2×1045	
  erg	
  s-­‐1	
  

Emission	
  region	
  size	
  from	
  reverbera>on	
  mapping	
  studies	
  
⇒	
  Energy	
  density	
  of	
  BLR	
  	
  

Break due to Compton-Scattered Ly α Radiation? 

(cf. Georganopoulos et al. 2001) 
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PKS 2155-304 
  X-ray selected BL Lac 
  z = 0.116, dL = 540 Mpc 
  Detected by EGRET, AGILE 
  August 2006:  bright flares, detected by 

–  Swift (Foschini et al. 2007)  (3 ks/day) 
–  HESS (Aharonian et al. 2007) 

•  Variability timescale:  ~5 minutes  

  BeppoSAX observed variability ~ 1 hr (Zhang et al. 2002) 

VARIABILTY Hyper-variable 
µεταβλητή 



Dermer                                              Fermi Summer School                      May 31 -June 10 2011 35 

Temporal Variability 

Γ1	


Γ2	



INTERNAL 
SHOCK 

γ rays	



RS >RS 

>RS 

tʹ′var > ΔRʹ′/c > ΓRS/c 
tvar = tʹ′var /Γ ≈ RS/c  

Size scale in stationary frame: ΔR > RS 
Size scale in comoving frame: ΔRʹ′ =  ΓΔR > ΓRS 
(Lorentz contracted to size R in stationary frame) 

Can small-opening angle colliding shells avoid this problem? 

Colliding Shell Solution: 

1.  Variability 

2.  Unification 

3.  Light curves 

4.  UHECR acceleration 

Mini-jets 

Magnetically-dominated jets 



3C 279  
  Where are the γ-rays made? 
  Monitor long-term behavior of 

light curve 
  Correlates with changes in 

optical polarization and flux 
  Highly ordered magnetic field 

over long timescale 
  γ ray dissipation location at 

multi-pc scale? 

Abdo., et al. 2010, Nature, 463, 919  

3C 279 
z = 0.538 



VHE γ rays from Flat Spectrum Quasars 

  3C 279 (z = 0.536) with MAGIC 
  PKS 1510-089 (zz = 0.361) with HESS 
  PKS 1222+216 (z = 0.432) with Fermi, HESS, VERITAS 

Aleksic et al. (2011) 

Variability of 70 – 400 GeV 
    radiation on 10 min timescale 

Two-zone scenario 
 (Tavecchio et al. 2011) 

Strong nuclear pc-scale IR emission 
(T = 1200 K, LIR = 8x1045 erg/s) 
Malmrose et al. (2011) 

Cosmic-ray induced emission on 
 pc scale  



Exercise 1: 
Synchrotron/SSC model in the Thomson regime 

Can measure 6 defining quantities for syn/SSC model: 
z, tv 

εs εC 

LC Ls 

AC = LC/Ls 

νFν = fε	



ε 

Γ> Γmin 

Thomson regime 

(Ghisellini et al. 1996) 



If electrons are assumed to radiate the observed synchrotron νFν 
spectrum, then in the δ-function approximation for synchrotron 
emissivity 

Exercise 2: 
Nonthermal Electron Synchrotron/SSC model 

Construct synchrotron/SSC model in δ-function approximation 



Relativistic jet physics 

New results on blazars and radio galaxies: 
1.  LBAS / 1LAC/ 2LAC catalogs 
2.  Multi-GeV spectral softening in FSRQs, LBLs, IBLs; 

not XBLs 
3.  Multiwavelength  quasi-simultaneous SEDs including 

GeV emission for radio galaxies, BL Lacs and 
FSRQse.g.,  
1.  FSRQs 3C 454.3, 3C 279 
2.  BL Lacs: Mrk 421, PKS 2155-304 
3.  Radio galaxies: Cen A, M87, 3C 84  

4.  3C 279, PKS 1510-089: location of emission site; 
complexity of magnetic field 

5.  Use SED to constrain redshift from EBL model 
6.  Long (mo – yr) timescale light curves 
7.  High energy photons from blazar sources: minimum 

Doppler factor 
8.  Radio/γ-ray connection 



Backup Slides 



Minimum  jet power for equipartition (minimum energy) magnetic field  

Jet Power 

Total jet power = sum of particle kinetic and magnetic field  

Minimize jet power for measured synchrotron flux  

Γ	


,ke 

  Jet power:  total power available in jet (in observer frame) 
  Lj = 2πrb′βΓ2c(u′B + u′p) (Celotti & Fabian 1993) 
  dLj / dB = 0  Bmin (equipartition) 

  B < Bmin  u′p >> u′B and fSSC > fsyn 
Synchrotron spectrum implies minimum jet power; additionally 

fitting γ rays gives deviation of model from minimum jet power 



Monte Carlo Simulation of Synchrotron/SSC Model 

R 

Improved accuracy 

Use accurate Compton kernel in the head-on 
approximation (Compton scattering, not inverse 
Compton scattering) 

Mersenne Twister for Random Number Generator 

Check uniformity assumption 
 (cf. Gould 1979) 

Can consider non-radial electron distributions 

Realistic γγ opacity calculations 

High energy tail for EBL studies 

Photon conservation 



Synchrotron with Photon Conservation 

Standard parameters: 

Scattering in KN regime 
Solves “line of death” problem in GRB physics? 



Monte Carlo Synchrotron/SSC with Uniform Electrons and B-field 

Comparison with δ-function approximation 
Discrepancies in amplitude 
Discrepancies in high-energy cutoff (could improve it by using exponential 
 cutoff in electron distribution) 
Excellent agreement with numerical calculation (mean escape length = 3R/4) 

νL
ν (

10
40

 e
rg

 s
-1

) 

νL
ν (

10
40

 e
rg

 s
-1

) 



  First definitive evidence of a 
spectral break above 100 MeV 

  General feature in FSRQs and 
many BLLac-LSPs 

  Absent in BLLac-HSPs 
  Broken power law model seems 

to be favored  
  ΔΓ~1.0 > 0.5 → not from 

radiative cooling 
  Favored explanation: feature in 

the underlying particle 
distribution 

  Implications for EBL studies and 
blazar contribution to 
extragalactic diffuse emission 

Non-power law spectra 

FSRQs BLLac-LSPs BLLac-ISPs BLLac-HSPs Challenge for modelers to account for  the break  
and the relative constancy of spectral index with time  

Abdo et al., 2010, ApJ, 710, 1271  



BL Lac and FSRQ: definition 
  classify an object as a BL Lac if the 

equivalent width (EW) of the strongest 
optical emission line is < 5 Å,  
 e.g.,  [O II] λ3727 and [O III] λ5007 
 classification of higher-redshift sources will 
preferentially use lines at shorter 
wavelengths (e.g., Lyα λ1216 and C IV  
λ1549) than for low-redshift sources (e.g., 
Mg II λ2798 and Hα λ6563). 

  a Ca II H/K break ratio C < 0.4,  
  Wavelength coverage satisfies (λmax −λmin)/λmax 

> 1.7 so that at least one strong emission line 
would have been detected if it were present.  

  Sources for which no optical spectrum or of 
insufficient quality to determine the optical 
classification are listed as “unknown type” 

3C 279 
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Radio Galaxies and Blazars 

Mrk 501, z = 0.034 

Cygnus A 

FR2 ↔ FSRQ 

FR1 ↔ BL Lac 

3C 279 

W Comae 

3C 279, z = 0.538 

BL Lacs vs. FSRQs:  
  EW < 5 Å 
  Ca H-K break < 0.4 
  (λmax −λmin)/λmax > 1.7 

FR1/2: radio power/morphology 
correlation; dividing line at  
≅ 4×1040 ergs s-1  
≅  (2×1025h-2

100 W/(Hz-sr) at 178 MHz) 

3C 296 

Blazar Unification:  
Padovani & Urry (1995) BL Lac vs. FSRQ 

RQ vs. RL 



Code written by  
  Justin Finke 

Write SSC as a function of: 
δD, B, rb′, z, Ne(γ). 

Use electron spectrum to  
calculate SSC using Jones (1968) 
formula 

νFνsyn gives Ne(γ) 
(CS86 expression) 

Internal and EBL absorption 
calculated 

Leaves two unknowns to fit:   
δD and B 

Minimize χ2	



Opacity corrections	
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  Sampling separate FSRQ and BL Lac populations 

Complex GeV Spectral Behavior 

Abdo et al. (2009) LBAS 


