Multi-TeV measurement with CREST experiment

Presented by Nahee Park
Enrico Fermi Institute, University of Chicago
Cosmic Ray Electrons

- Primary + Secondary
 - Substantially primary
 (positron fraction \(\sim 10\% \))
 - \(\sim 1\% \) of proton intensity at 1GeV, rapidly decreased than proton
 - Energy loss of high energy electron is proportional to \(E^2 \)
 - TeV electron horizon: \(\sim 1 \) kpc (\(10^5 \) yr propagation)
 - Possible local source: Vela, Cygnus loop, Monogen, SNRs

Compiled data up to Jan. 2010 from CR database (A.W.Strong et al, 2009 ICRC)
Multi-TeV region largely unexplored, where the potential is greatest for detecting nearby cosmic accelerators…
Cosmic Ray Electron Synchrotron Telescope

- High energy electron (>TeV) measurement via synchrotron radiation
 - Detect x-ray synchrotron photons generated in the magnetic field of the Earth as primary electron passes through
 - Advantage
 - Increase of the effective area of instrument
 - Rejection of proton signal

- Designed for long duration balloon flight
CREST Collaboration

University of Chicago: S. Wakely, N. H. Park, D. Müller

Indiana University: C.R. Bower, J. Musser

Northern Kentucky University: S. Nutter

Penn State University: T. Anderson, S. Coutu, M. Geske

University of Michigan: M. Schubnell, G. Tarlé, A. Yagi, J. Gennaro
Signal and Background

Signal
- Synchrotron radiation generated from electron
 - Line of photons arriving nearly simultaneously
 - Mean photon energy related to primary electron energy

Background
- Cosmic and shower-produced x-rays and large charged particle flux
 - Random single x-ray coincidences
 - Interactions in the detector and frame
 - Bremsstrahlung photons from low energy electrons

→ Requires good timing resolution
Detector Design

Crystal Array
- 1024 BaF$_2$ crystals w/ 2” PMT readout, embedded in foam matrix
- Photon energies from ~30 keV to 30 MeV
- Designed to have 1 nsec timing resolution

Veto paddles
- > 99% hermetic
- Thin plastic scintillator with waveshifting fiber readout into 2” PMTs

Expected Performance
- Sensitivity on synchrotron coming from electron up to ~ 50 TeV or so
Antarctica Flight

- Antarctica flight in 2011/12 season
 - Launch on Christmas day on 2011
 - Flight time: ~ 10 days
 - Recovery done on Feb. 2012
Current Status

Analysis

• Flight calibration
 • Timing calibration: by using LED pulser run & adjacent hits in crystal (calibration trigger)
 • Energy calibration: by using Radium impurities in crystal and 511 keV line
• Comparison between flight data and simulation

Investigation on hardware improvements

• Lighter detector
• Better Compton scattering shield