Space-based Gamma-ray Astronomy

Liz Hays (NASA Goddard Space Flight Center)

The Origin of Cosmic Rays

Victor Hess and his "Flight Ops Team", 1912

Credit S. Swordy

How to make gamma rays

From protons

- Pion decay
 - Accelerated protons (p) interact with matter
 - $-p \ p \rightarrow X + \pi_0 \rightarrow \gamma \ \gamma$
- Proton Synchrotron Emission
 - Depends on magnetic field strength (not dominant under typical conditions) γ's

How to make gamma rays

From electrons

- Inverse Compton Scattering
 - Collide highly relativistic electrons with photons from stars or the microwave background

$$e^{-} + \gamma_{Low E} \rightarrow e^{-} + \gamma$$

$$E_{\gamma} \propto (\gamma_{Lorentz})^{2} E_{\gamma Iow E}$$

$$\gamma_{Lorentz} = 1/\sqrt{(1 - v_{e}^{2}/c^{2})}$$
Scattered γ

Arthur Holly Compton

- Nobel Prize in Physics 1927
 - Scattering of photons by electrons demonstrated the particle nature of electromagnetic radiation
 - This and inverse mechanism are responsible for much of gamma ray production and detection

486

ARTHUR H. COMPTON

scattering electron in motion at an angle of less than 90° with the primary beam. But it is well known that the energy radiated by a moving body is greater in the direction of its motion. We should therefore expect, as is experimentally observed, that the intensity of the scattered radiation should be greater in the general direction of the primary X-rays than in the reverse direction.

The change in wave-length due to scattering .-- Imagine, as in Fig. 1A,

that an X-ray quantum of frequency ν_0 is scattered by an electron of mass m. The momentum of the incident ray will be $h\nu_0/c$, where c is the velocity of light and h is Planck's constant, and that of the scattered ray is $h\nu_0/c$ at an angle θ with the initial momentum. The principle of the conservation of momentum accordingly demands that the momentum of recoil of the scattering electron shall equal the vector difference between the momentum of these two rays, as in Fig. 1B. The momentum of the electron, $m\beta c/\sqrt{1-\beta^2}$, is thus given by the relation

$$\left(\frac{m\beta c}{\sqrt{1-\beta^2}}\right)^2 = \left(\frac{h\nu_0}{c}\right)^2 + \left(\frac{h\nu_\theta}{c}\right)^2 + 2\frac{h\nu_0}{c}\cdot\frac{h\nu_\theta}{c}\cos\theta,\qquad(1)$$

where β is the ratio of the velocity of recoil of the electron to the velocity of light. But the energy $h\nu_0$ in the scattered quantum is equal to that of the incident quantum $h\nu_0$ less the kinetic energy of recoil of the scattering electron, *i.e.*,

$$h\nu_{\theta} = h\nu_{0} - mc^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}} - 1\right) \cdot \qquad (2)$$

We thus have two independent equations containing the two unknown quantities β and ν_{θ} . On solving the equations we find

7. .

$$v_0/(1 + 2\alpha \sin^2 \frac{1}{2}\theta),$$
 (3)

AIP Center for History of Physics http://www.aip.org/history/

How to make gamma rays

From electrons

- Brehmsstrahlung (deceleration radiation)
 - Electron deceleration by a nucleus
 - Highly relativistic electrons emit gamma rays in atomic or molecular material

Other ways to make gamma rays?

- Topological defects left over from the Big Bang?
 - Hypothesis: Black holes formed with the early Universe decay
- By-product of dark matter interactions?
 - Hypothesis: weakly interacting massive particles (WIMPs) interact to produce gamma rays: DM + DM $\rightarrow \gamma \gamma$

WIMP + WIMP $\rightarrow \gamma + \gamma$

Why look for cosmic gamma rays?

- Supernova explosions release radioactive isotopes
- Cosmic rays are mostly protons
- Radio and later X-ray observations
 - Synchrotron emission from populations of accelerated electrons
- Infrared, optical, and UV observations
 - Target material and low energy photon populations

NB: we still use balloons, too

Nuclear Compton Telescope. Credit: S. Boggs/NCT collaboration

How to "see" gamma rays

Gamma rays are scattered and absorbed in matter (troublesome for standard focusing techniques)

- Cross section depends on material and energy
 - Coherent Scattering (electron remains bound to atom)
 - Photoelectric Effect
 - Compton Scattering
 - e⁻ e⁺ Pair Production

Gamma rays in Germanium Credit: Richard Kroeger

Pair production

• Gamma ray energy is converted to an electron and positron in the presence of a nucleus

A problem for astronomy

It's actually pretty hard to observe from the ground. Black arrows indicate average depth for wavelengths across the electromagnetic spectrum.

Several solutions

- Solution I: put detectors in the upper atmosphere or above it
 - Balloons and rockets
 - Space probes
- Solution II: this is not a problem; it's a detector!
 - Build instruments on the ground that collect the absorption by-products

Solution I

Gamma rays with energy below ~50 are detected in space

- Using the Compton Effect: keV MeV
 - Below a few hundred keV can used X-ray techniques, such as coded masks
- Using pair production: MeV GeV
 - Above ~50 GeV there are so few gamma rays that satellite detectors, area ~ m², are too small

Historical note: Discovery of GRBs by the Vela satellites

- Nuclear weapons test monitoring satellites
 - ->70 bursts in the 1960's

Vela 5B Credit: NASA HEASARC

First indication of powerful, <u>very short timescale</u> cosmic explosions

Neutron stars in our Galaxy? Not clear until later that these were extragalactic

SAS 2 mission

Small Astronomy Satellite November 1972 - June 1973

- Mapped the high energy gamma-ray sky in detail
- Measured high energy gamma-ray background
- Confirmed that gamma rays come from dense regions of the Galaxy

Credit: NASA HEASARC

The Compton Gamma Ray Observatory

1991-2000 4 instruments span 30 keV - 30 GeV Deployed by the space shuttle

Credit: NASA

- High energy detector,
 EGRET
 - Pair conversion
 - >270 sources (many unidentified)
- Medium energy,
 COMPTEL
 - Compton technique
- Gamma-ray burst detectors, BATSE 2704 γ-ray bursts

burst). Red are for long/bright bursts, purple are for weak/short. Gray do not have a calculated fluence. Credit: NASA/BATSE

The High Energy Sky circa 2000

EGRET All-Sky Map Above 100 MeV

Summery

- Gamma rays below ~50 GeV must be detected in space
- Gamma ray interactions are better suited to tracking detectors than conventional optics
- Increasing detector area and resolution provide increasingly detailed maps of the sky and catalogs of sources

Gamma-ray cross sections

NIST database of photon cross sections: M.J. Berger, 1 J.H. Hubbell, S.M. Seltzer, J. Chang, 3 J.S. Coursey, R. Sukumar, D.S. Zucker, and K. Olsen