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Questions in y-ray astronomy

¢ |s a source significantly detected?

e |f sO, what is its flux?

e |f not, what is upper limit on the flux?
e \What kind of spectrum does it have?
e \What is its spectral index?

e \What is its location in the sky?

e \What are the errors on these values?

e |s the source variable?



Questions in DM astrophysics

e Does Fermi detect y-ray line emission
from DM particle annihilation?

e With what significance?

e \What is the energy of the line?

e \What is the measurement error?
e \What is the spatial distribution?

e \What kind of systematic errors may be
present?
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Questions in y-ray astronomy
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Is a source significantly detected?

If so, what is its flux?

If not, what is upper limit on the flux?
What kind of spectrum does it have?
What is its spectral index?

What is its location in the sky?

What are the errors on these values?

Is the source variable?
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Maximum likelihood technique

e (Given a set of observed data:

e ... produce a model that accurately
describes the data, including parameters
that we wish to estimate,

e ... derive the probability (density) for the
data given the model (PDF),

e .. treat this as a function of the model
parameters (likelihood function), and

e ... maximize the likelihood with respect to
the parameters - ML estimation.



Maximum likelihood basics

Data X = {Cl?z} — {371,5172, ...,CEN}
Model parameters: © ={6;} = {61,60s,...,00}
Likelihood: L(O|X) = P(X]|06)

Conditional probability rule for independent
events:  P(A, B) = P(A)P(B|A) = P(A)P(B)

CPR Independence

For independent data:
P(X|0) = P({zi}|©) = P(2:|0)P(22, .., 2n|0) =
— P(21|0)P(z4]|0) - - - P(zy|O) prz

L(6]X) = HP z;|©)



ML estimation (MLE)

e Parameters can be estimated by maximizing
likelinood. Easier to work with log-likelihood:

In£(0) =InL(0|X) = ZlnP z;|©)

e Estimates of {fx} from solving simultaneous

equations: [ 5y,
=]
005 1143 ' (oiy
e For one parameter, if we have: L£(#) ~e i
then: 90°InLC 1 caucciom
892 5 — —O-_g approximation

so 2"d derivative is related to “errors”



Why maximum likelihood...

...rather than some ad-hoc estimation method?

ML framework provides a “cookbook”
through which problems can be solved.

In other methods ad-hoc choices may have to be made.

ML provides unbiased, minimum variance
estimate as sample size increases.

Same may not be case for ad-hoc methods.

Asymptotically Gaussian: evaluation of
confidence bounds & hypothesis testing.

Well studied in the literature.

Starting point for Bayesian analysis.



MLE example 1:

x2 fit of constant - |

e Data: independent measurements of
flux of some source with errors - (z;, o)

e Model: all measurements are of a
constant flux F with Gaussian errors.
1 - (zy—F)?

e 20?.’2
\V 2To;

e Probabilities: P(z;|F) =

e | og likelihood:
o I\2
lnE(F):—Z(xZ ) Zlnai—glnwr

2
20;
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MLE example 1:

x2 fit of constant - ||

e | og likelihood:

Constant with respect to F

lnE(F):—Z(xi_F)Q

2
20;

M

e Maximize for MLE of F:

Oln L r; — F 5 S awrles
oF = 2 M SV
e Curvature gives “error” on F:
1 FnL 1 1
_ — — i —
0% OF? |p 2 o7 | Jx1ja
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Example: combining results

Combined EBL measurements from Sanchez et al. (2013)

The spectral break predicted
using the model of Fra08 is in good agreement with the data; the

mean scaling factor 1s (@) = 0.85 + 0.10

Similar results were found
by Ackermann et al. (2012) and Abramowski et al. (2013), who
modeled the EBL-absorbed spectra of AGNs detected in the
HE and VHE regimes respectively, and found scaling factors of

Qromi = 1.02 +0.23 and AHESS = 127i81§

Taking only the statistical errors, a y? fit to the HESS, Fermi and
our results gives a mean value of @compines & 0.98 and a value
of x> = 5.45 for two degrees of freedom, compatible with the
hypothesis that the values are consistent at the 1.85

12
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MLE example 2:

Event counting experiment

e Experiment detects n events (e.g. y rays)

e Model: Poisson process with mean of of A:
Ane—A

P(z|0) —» P(n|)\) =

n!

e | 0g likelihood: InL(A) =nlnA — A —Inn!

e ML estimate and error in Gaussian regime:
OlnL n

———1 = A=mn
O\ A
2
i L a 111[: L ﬁ_ 2. . Gaussian
0—?\ R ON2 5 o 5\2 % — approximation
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MLE example 2:

Event counting experiment

e Experiment detects n events (e.g. y rays)

e Model: Poisson process with mean of of A:

Ate—A
n' Constant WRT A

e Log likelihood: InL(\) =nln\ — X =Tl

Data cpt Npred

P(z|0) —» P(n|)\) =

e ML estimate and error in Gaussian regime:

olnL n r
TR W ..

2
]' _— 8 111 E n . Gaussian
25 AA

approximation

13



MLE example 2:

Log -likelihood profiles

e (Gaussian approximation
% IS reasonable when nis
: “large enough”. In this

: case 0 = n is a good

estimate of the “error”.

P0|sson I|ke||hood
Gaussiaq approximation

2Alog(L)
N

3 f n = 100 .
B A S — e |f not, estimate errors by

80 85 90 95 100 105 110 115 120

Poisson mean (N finding points where
L lssonlkeindos —— - 2In L(\) decreases by

Gaussian approximation

1.0 from maximum, i.e.,

2In L(A\) = 2In L()) —

2Alog(L)

A

e n=100: \ = 100.0"g%>

Poisson mean (A) ® n=2 : A — 2 0+i ’]7_’6 14
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MLE example 2:

# errors poisson.py - 2013-05-07 SJF

# Evaluate the errors on the Poisson mean

import math, scipy.optimize

n meas = 2

logL = lambda lam: n meas*math.log(lam)-lam

opt fn = lambda lam: -logL (lam)

opt res = scipy.optimize.minimize (opt fn, le-8)

lam est = opt res.x[0]

logL max = logL(lam est)

root fn = lambda lam: 2.0* (logL(lam)-logL max)+1.0
lam lo = scipy.optimize.brentg(root fn, le-8, lam est)
lam hi = sclpy.optimize.brentg(root fn, lam est, 1le8)
print lam est, lam lo-lam est, lam hi-lam est

O [ I I

Gaussian approximation

2Alog(L)
N

pfsso lkelood —— - 21n L(\) decreases by
1.0 from maximum, i.e.,

2In L(A\) =2InL()) — 1

e nN=100: \ = 100.0710:33

Poisson mean (A) o n=2: A — 2.0t]1»:’{’5 .



Hypothesis testing

Compare likelihoods of two hypotheses to
see which is better supported by the data.

Likelihood-ratio test (LRT) & Wilks’ theorem.

Given a model with N+M parameters:
© = {01, ia -79N,9N+1, e 70N+M}
where N have true values: 47,...,0;

Values of likelihood under two hypotheses:

Li=L(O,...,08,0n41,..
Lo=L0T,... 0%, 0n1,...,0
“Ratio” distributed as:

0N inr)

70N+M)

2(In L1 — In Ly) ~ x*(N)

Terms and conditions apply

16



Why is that useful?

(We don’t know the true values of any parameters!)

We make an assumption about | reareeevessions

ARE ST TEACHING KIDS

the model (the null hypothesis), | feor e v
in which the parameters have ST THAT CNCLOSVELY

y - DISPROVED IT MARS AGO.
some presumed “true” values.

‘0
Compute £, from these values TF%(
and £, using MLE for all params. 7§

HOpe tO ShOW th at 9 (ln e ; — In [:O) http://xkcd.com/892/
is so large that it is improbable from x*(V),

and, hence, reject the null hypothesis.
Usually cannot say hypothesis is true!

17
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http://xkcd.com/892/

MLE example 3:

Source & Background

e Data: events detected in two independent
“channels”. X = {ny,n,}

e Model: Poisson process with...
— Unknown “source” and “background”:

© = {6,6,} = {S, B} é:(%):(g)

— Response matrix ( ri Tio )
) T

(presumed known 21 T22

— Poisson means: / \ \ [ ry ro
XZR@ Ao )\ ra1 T



MLE example 3:

MLE

e | og likelihood:
In [:(S, B) =M1 111(7'118 + T12B) o m 9 11’1(7‘215 -+ TQQB)
o (7‘11 -+ 7“21)5 — (7"12 -+ T22)B -+ const

e MLE: 9InL OInL 5 _R-lz
955 — 9B =0 =9 n

S o 1 T929 —T19 (3]
B 11 20— ¥ 12091 =121 i1 T

InLq = lnﬁ(S’, B) =ny1nn; + nylnng — (N1 + ny)

e If likelihood: L(6)~ e 26~ (O-6) | caussian
(C L} approximacion
errors” are: 0%°InL

=—(X7); = -I
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MLE example 3:

MLE

e | og likelihood:
I Data component i
lnﬁ(S, B) =M1 111(7‘115 leB) 9 111(7‘215 TQQB)
— (11 +721)S — (112 + 722) B +>>V><

Npred

e MLE: 9InL OInL 5 _R-lz
55 — 3B =0 =9 n

S o 1 oo —1719 3]
B 1792 — 12723 =J21 i1 T

5L =li E(S’, B) =nyInny + nglnng — (N1 + ny)

e If likelihood: L(6)~ e 26~ (O-6) | caussian
(C L} approximacion
errors” are: 0%InL

=—(X7); = -I
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MLE example 3:

MLE

e | og likelihood:
I Data component i
III[,(S, B) =M1 111(7'115 7"12B) 9 111(’7'213 7‘22B)
— (11 +721)S — (112 + 722) B +>>V><

Npred

e MLE: 9InL OInL o has i
55 — 9B =0 = O=R™"n

S o 1 129 112 ni
B 1722 — 712721 =191 ¥1d T

5L =li E(S’, B) =nyInny + nglnng — (N1 + ny)

o If likelihood: £(6) ~ e 2©-©"27(6-6) | caussian

approximation
“errors” are: 9?In L > -
- |. =— (&) =TI
39289_7 S A A

Covariance matrix Fisher information matrix




MLE example 3:

Covariances and errors

e (Calculate Fisher information matrix and invert:

2
T, — 0“In L oy 0% cov(g, B) _ 71
06,00, | 5 cov(S, B) o5

e [For our example we get:

T — 1 T%lnl 7"%177/2 1917220 & V11112109
n1M9 217221 T T'11T712M2 7"%2”1 3 i ""%2”2

> 1 7"%2’”/1 = i 7"%2”2 —T21T92M1 — T1171272
det(R)% \ —T21722m1 — T11712M2 r5na + Tiimns

* |n general parameters are correlated, but can
choose set that is uncorrelated. Here they are
{)\17 )\2} glVlng 5\1 =N, 3\2 — M9, 2)\ — diag(nl, nz)
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MLE example 3:

Source significance

e Null hypothesis: suppose S =0, then:
In Lo(B) =In L(S =0, B)
=n1lnrieB 4+ nglnreB — (112 + 792) B

. _ | ,\ &
e VMLE for B glves. OlnLo _ 0 — B, = Mt™
In [:0 — i Eo(Bo) 0B F2 T 722
— ri2(n1 + ng) L gxal roa(m1 + ng) (1 + 1)
T12 + T22 T12 + T22

e Test statistic: 7S =2(InL; —InLp) ~ x*(1)

(r12 + 7"22)7?/2-
roo(n1 + ng) I

(r12 + T22)M1
712 (nl + nz)

19 In

1S =2 |ny i

21



On/Off problems

From: Berge, Funk, Hinton

Event Map

Event Map A&A 466, 1219-1229 (2007)

-29 -29

o

-30 /.-
Observation -~

> . &, — On Region
Positions “. K ‘H eg

.0

-31 DERLIT  tex
Observation’ - -
Positions

22h02m 21h58m 21h55m 22h02m 21h58m 21h55m

e VHE astronomy - gamma-ray sources and a
background of cosmic rays.

e Problem - to evaluate flux of source and its statistical
significance. Define on-source (source+background)
and off-source (background) channels.
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http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B
http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B
http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B
http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B

On/Off problems

Reg3 (SOURCE), E, =129. 1 GeV From: Aad et al.
Y T > VVVVVVVVVVVVV
])-\'nlll(*—()..")l. \;'.,, =20.1/21 @ - o.-u.-.zon
10 k- $ 700 Background model
LL>J SM Higgs boson m 120 GeV (MC)

30

Counts

s
1—_.#

20 |

Il ' \S-TTeVJ.Ldl—d,gfb’
AU g LTS P Al |
' 4 . ’ —

“ ml"'l' +

lll

=" { 1 I I{ b=l gr3id | .
L III III"
£l 1 t1 S ) 14 |
: R e gl o
oo e B S T NN R
JCAP 1208.,7 (2012) 2 e m (GeV)

® |ine searches - DM with Fermi, or Higgs with ATLAS.

e Problem - detect line signal on top of spectrum of
background events. Define “on-source” and “off-
source” regions. Must assume that spectrum of
background is known or calculable.
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http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://adsabs.harvard.edu/abs/2012JCAP...08..007W

On/Off problems

e General set of problems where:
No — Noff

W1 2 Nan
Ay — )\off =¥
)\1 —2 )‘on — (S+ OZB)T

e and where these are assumed to be known:
a - on to off-source background ratio

T - observation time (or other detector
factors)

24



MLE for On/Off problems

B l « 4 Lird —e
-Then.R_T(O 1) R _T(O { )

In £(S, B) =nopIn|(S + aB)T| + ny¢¢In BT
—(S+(14+a)B)T

e MLE & (co)variances of S and B are:

B = Tnoff Op = YTQnOff

X 1 o 1 0

- T(n‘m — 0Noff) 05 = 75 (Mon + A Nogy)
This is what you cov(S, B) = —ianoff

would expect!
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TS for On/Off problems

Test statistic for source detection in On/Off
problems is:

15=2 110

Significance is: o = VTS

This is the famous “Li & Ma” formula from:
Apd 272, 317 (1983) - 493 citations on ADS

Probably, you wouldn’t arrive at this formula
using ad hoc estimation methods

P-values: scipy.stats.chi2.sf (7S5, 1)
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Eg: 1ES1218+304 w/VERITAS

Discovery of Variability in the Very High Energy y-Ray

Emission of 1ES 12184304 with VERITAS

Acciari, et al., Apd, 709, 163 (2010)

Table 1 summarizes the results of the VERITAS observations of 1ES 1218+304. For the
spectral analysis, we report an excess of 1155 events with a statistical significance of 21.8

standard deviations, o, from the direction of 1ES 1218+304 during the 2008-2009 campaign

noff = 4959
Nen = 2808

=272 hr

a=1/3

|(2808 signal events, 4959 background events with a normalization of 0.33)| Figure 2 shows

the corresponding time-averaged differential energy spectrum. The spectrum extends from

200 GeV to 1.8 TeV and is well described (x*/dof = 8.2/7) by a power law,

Table 1. Summary of observations and analysis of 1ES 1218+304* .

Live Time Zenith Significance o> 200 GeV) Units of Crab Nebula
[hours| 4 [10-12 cm—2 5] flux (E > 200 GeV)
2006-2007" 17.4 2-35 10.4 12.2 £ 2.6 stat 0.05 £ 0.011

2008-2009 2-30

18.4 % 0.9 stat

0.07 £ 0.004

OPOE —

gs

= 199 ~

18.4
0.9

Ratio of value to error - used as “significance” before Li&Ma

— 42 5hr !
—92.1hr!

= 474.9

=21.8|

P — value

— 2.8 x 10719


http://adsabs.harvard.edu/abs/2010ApJ...709L.163A
http://adsabs.harvard.edu/abs/2010ApJ...709L.163A

Eg: 1ES1218+304 w/VERITAS

# lima.py - 2013-05-15 SJF
# Example of Li & Ma significance calculation
import math, scipy.stats

def ts lima (non,noff,alpha):

opa = 1.0+alpha

ntot = nontnoff

return 2.0* (non*math.log(opa*non/alpha/ntot) \
+ noff*math.log(opa*noff/ntot))

= 2808
= 4959
alpha = 1.0/3
T = 27.2
S hat = (non - noff*alpha)/T
sig2 S = (non + noff*alpha**2)/T**2
ts = ts lima (non,noff,alpha)
signif = math.sgrt(ts)
Pval = scilpy.stats.chiZ2.sf(ts, 1)
print S, math.sgrt(sig2 S), ts, signif, Pval

~_ RdUo Of vdiug (0 €rmor - GSed das _ SIgIiicdrice” verore cixivid



Confidence regions

In problems with multiple parameters.

Saw earlier that we can calculate “asymmetric
errors” by finding points where 2InL decreases
by 1.0: 2-sided 10 confidence interval (68%)

Actually this comes from LRT (Wilks’ theorem).
This is region where null hypothesis that
parameter value has some value cannot be
rejected at given confidence level.

But what to do if likelihood depends on more
than our parameter of interest?

It depends...
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Profile likelihood

Confidence regions with nuisance parameters
Rolke, et al., NIM A, 551, 493 (2005)

Often we are either concerned only with the
one parameter, or wish to treat the multiple
parameters separately (ignore covariance).

Produce “profile log-likelihood” curve, a
function of only one parameter (at a time),
maximized over all others.

LRT says this should behave as x2(1).

Define confidence region using this function
exactly as before.
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http://adsabs.harvard.edu/abs/2005NIMPA.551..493R
http://adsabs.harvard.edu/abs/2005NIMPA.551..493R

2Alog(L)

Example of profile likelihood

L&M a profile likeliho d—
Gaussian a pproximation

S [counts/hr]

S =i.Ftk o e

e QOur 1ES1218 example
isn’t very enlightening
here, so take:

Noff = 24
M =219
a=1/3
= 10.0 hr
e QGiving:
S =0.7hr?
og = 0.42hr !
15 =343
o = 1.89
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2Alog(L)

Example of profile likelihood

Gaussian a pproximation

L&M a profile likeliho d—

' H |
0 0.5 1 1.5
S [counts/hr]

A

B =07k

e QOur 1ES1218 example
isn’t very enlightening
here, so take:

This is not a significant result, so we
would usually not claim a detection.
Provide an upper limit instead.

Noff = 24

Wi = 19
a=1/3
1" =100 hr

e Giving:
S =0.7hr?
og = 0.42hr™}
15 =443

(0 =185)
31



Example of profile likelihood

2AI09(L)

# conf lima 1d.py - 2013-05-25 SJF

# 1-D 2-sided confidence interval in Li & Ma problem
from math import *

import scipy.stats, scipy.optimize, SVyS

# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
C =0.68; # Use l-sigma confidence region

d2logL = scipy.stats.chi2.ppf(C,1)
def logL(S,B):
return non*log(max ((S+alpha*B) *T,sys.float info.min)) + \
noff*log (max (B*T,sys.float info.min))-(S+(l+alpha) *B) *T
def profilelLogL (S) :
opt fn = lambda B: -logL (S, B)

opt res = scipy.optimize.minimize (opt fn, 1)
return -opt res.fun
S hat = (non-noff*alpha) /T
B hat = noff/T
logL max = logL(S hat,B hat)
sig S = sqgrt (nontnoff*alpha**2) /T
TS = -2.0* (profileLogL (0) -loglL max)
root fn = lambda S: 2.0* (profileLogL(S)-loglL max)+d2Z2logL
S lo = scipy.optimize.brentq(root fn, le-8, S hat)
S hi = scilpy.optimize.brentg(root fn, S hat, 1led)

print S hat, S lo-S hat, S hi-S hat, sig S, TS, sqrt(TS)




Example of profile likelihood

2AI09(L)

# conf lima 1d.py - 2013-05-25 SJF

# 1-D 2-sided confidence interval in Li & Ma problem
from math import *

import scipy.stats, scipy.optimize, SVyS

# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
C =0.68; # Use l-sigma confidence region

d2logL = scipy.stats.chi2.ppf(C,1)
def logL(S,B):
return non*log(max ((S+alpha*B) *T,sys.float info.min)) + \
noff*log (max (B*T,sys.float info.min))-(S+(l+alpha) *B) *T
def profilelLogL (S) :
opt fn = lambda B: -logL (S, B)

opt res = scipy.optimize.minimize (opt fn, 1)
return -opt res.fun
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Frequentist upper limits

One-sided confidence region using profile likelihood
Rolke, et al., NIM A, 551, 493 (2005)

| | | | | | >
Two-sided interval One-sided interval

e |n two-sided interval search for two points S12
Where —2A1n [:(Sl,z) =T W|th Xz(il?, 1) =10

e For one-sided interval (with C>0.5) we need
to find single such point with Sy, > § and for
which 0.5 + x%(z,1)/2 = C (or x*(z,1) =2C — 1)

e E.g.for C=0.95we search —2A1n L(Sy) = 2.71
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2Alog(L)

Example of profile likelihood

L&M a profile likeliho d—
Gaussian a pproximation

0 0.5 1 1.5
S [counts/hr]

S = 0.7t hiE

e Frequentist upper limit at
95% confidence level:

S<95% = 147 hI'_1

Exercise: adapt 2-sided interval
code to calculate this

Our 1ES1218 example
isn’t very enlightening
here, so take:

Noff = 24
M = 19
a=1/3
1" =10.0 hr
Giving
S =0.7hr?
og = 0.42hr™}
15 =343
o= 1.85
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Bayesian statistics

Likelihood function has no meaning itself,
e.g., it is not a probability. Its usefulness
comes from theorems such as the LRT.

MLE belongs to the class of “frequentist”
statistical methods: talk about the results of
repeated hypothetical experiments.

Saw how to produce confidence intervals:
true parameter value would lie inside the
interval in a certain % of hypothetical expts.

Somewhat awkward language ?7?7?
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Bayesian statistics

e |n Bayesian statistics we talk about the
“probabillity” that the parameters have
certain values.

e Bayes’ theorem:

Posterior
probability > P(O|X) =
density

P(©)P(X|0)

P(X)

Prior probab
Likeli

\4

x P(©)L(O

ility density
hood

X)

relates probability after experiment has been
done to probability before.

e Can think of this as refining our belief about
the model through experimental results.
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Bayesian upper limits

Or more correctly “Quasi-Bayesian” or “Bayesian-like”

Physical region ~ ® BayeSian confidence

Rl regions correspond
to what you would
expect...

e ...they are regions that contain a certain
fraction of the posterior probability.

Unphysical region
Prior is zero

Upper limit

® |ntegrate over parameter from lower bound to
find point where integral reaches C% of total.

e |n case of multiple parameters, use the profile
likelihood. Not strictly a Bayesian approach.
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2Alog(L)

Example of profile likelihood

L&M a profile likeliho d—
Gaussian a pproximation

0 0.5 1 1.5
S [counts/hr]

A

S =i.Ftk o e

e Frequentist upper limit at
95% confidence level:

S<95% = 147 hI'_1

e Bayesian 95% upper limit:
S<95% = 1.94 hI'_1

e QOur 1ES1218 example
isn’t very enlightening
here, so take:

Noff = 24
M =219
a=1/3
= 10.0 hr
e QGiving:
S =0.7hr?
og = 0.42hr !
15 =343
o = 1.89
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Why have two methods?

The problem of unphysical upper limits

e Unphysical frequentist upper limits occur can
occur if the peak of the likelihood is in an
unphysical region of the parameter space.

e More complex (or ad hoc) approaches fix this.

e But Bayesian upper limits are not affected.

39



2Alog(L)

Example of unphysmal MLE

0> Li&Ma a profile likelihood ———
L Gaussian a pproximation 0.9
o E ool Posterior probablllty
2T é 0:4 :
2.5 % 03 |
Likelihood profile g o
-%1.4 -1.2 -1 -01.8 -01.6 -0.4 -0.2 ° 0 0.5 1 1.5
S [counts/hr] S [counts/hr]
MLE is negative - not A 5
— ) > —
Mofs = 36 physical for source flux. S 0.8 hr
_ )
Non — 4 . Oqg = 028 hI'
‘ “Background fluctuation”, =
a=1/3 fewer “On” counts than 'S =580
T = 10.0 hr expected given “Off it . O AT

Frequentist UL: Scgs = —0.29hr™" - unphysical
Bayesian UL:  Scgs9, = 0.43hr™! - OK!



# ul lima bayes 1d.py - 2013-05-25 SJF

# Bayesian upper limit in Li & Ma problem

from math import *

import scipy.stats, scipy.optimize, scipy.lntegrate, sys

# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)

# non, noff, alpha, T = (15, 24, 1.0/3, 10.0)

non, noff, alpha, T = (4, 36, 1.0/3, 10.0)

C = 0.95; # Use 95% confidence region

def logL(S,B):
return non*log (max((S+alpha*B) *T,sys.float info.min)) + \
noff*log(max (B*T,sys.float info.min))-(S+(l+alpha) *B) *T

def profilelLogL (S) :
opt fn = lambda B: -logL(S,B)

opt res = scipy.optimize.minimize (opt fn, 1)
return -opt res.fun

S hat = (non-noff*alpha) /T

sig S = sgrt (non+noff*alpha**2) /T

loglL max = profileLogL (S hat)
def logPrior (S):
return log(1l);
def logPosterior(S):
return logPrior (S)+profilelLogL (S)-logL max
def integralPosterior (Smax) :
integrand = lambda S: exp(logPosterior (S))
y, err = scipy.integrate.quad(integrand, 0, Smax)
return y
total integral = integralPosterior (S hat+100*sig S);
root fn = lambda S: integralPosterior(S) - total integral*C
S ul = scipy.optimize.brentqg(root fn, 0, S hat+l1l00*sig S)
print S ul, integralPosterior (S ul)/total integral, total integral
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Good practices

e |tis always best to define all the parameters of
an analysis before looking at the data.

— Data selection “cuts”
— Thresholds for claiming detection.

e |tis tempting to adjust the analysis procedure
to enhance some small signal, BUT THIS IS
FRAUGHT WITH DANGER!

e Best practice is to do a blind analysis. Use MC
or side-band data to refine analysis in advance.

e But this is not always possible...
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Trials factors

Or the “look-elsewhere effect”

e Often you simply don’t know enough in
advance to fully determine the analysis, e.q.

— the mass of the DM particle (or Higgs)
— the locations of sources in the sky etc...

e S0, you must look through the data and
search for a significant excess signal ...

e ... and unfortunately you must pay a statistical
penalty for doing so.
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Trials factors

Or the “look-elsewhere effect”

If after making N independent tests of for a
significant event (e.g N energy channels)

the most significant test had a P-value of: P,,.

then to account for the number of “trials” you
must scale the P-value as: P, =1 — (1 — Pye)”

For example, a 40 event has a P-value of
P,re = 6.3 x 107°, With 1000 trials, the post-trial
P-value of Py =1— (1 —6.3 x107°)'° = 0.06

which is equivalent to a 1.90 event.
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For example (nggs@CMS)

@ 11— —
% = v Wooooo\._ .\'/.-&moi
S | &!\ - o
a 10" T ¢ 3 =
B - | .
S F 7 2
= 10° E ¢ =
10°% = TS =
— : _ . _ ) -1 -
0 CMS Preliminary, \'s = 7 TeV, Combined, le =1.1-1.7 b 2 60 pre-trials
— Interpretation requires look-elsewhere effect correction 1.90 post-trials {4
2 ‘ y - . ' — y . — - — — ' * —
2] [~ —
% o |- t1o from fit | _—
O 1
(a8
900 200 300 400 500 600

Higgs boson mass (GeV/c?)

e But.. how many truly independent samples?

e Depends on resolution & can be difficult to
estimate
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Detectability / Sensitivity

¢ |nterested in detectabillity of sources, i.e.

sensitivity of instrument for given threshold.

e Consider “no fluctuations” case where:
Ngy = (Si+aBy)T, nyf; =BT

on

e [hen test statistic Is:

TSN —9

(S: + aB;)T In (

+BtT hl

1+ a)(S; + aBy)T
a(S; + (14 a)B;)T
(14+ )BT

(S¢+ (1+a)B)T
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Detectability / Sensitivity

e \Weak source case: S; < aB;

JT B
\/1—{-04\/0th

= VT SNF

Grows as sqrt(T)
e Strong source case:. S; > aB;

= VTSNF =~ /25, TIn(1 + 1/0) «~—

Note what happens here when ac — 0 (which corresponds to perfectly well
determined “zero” on-source background) the significance becomes
infinite. If you have no background then even one event is a significant.
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Meanwhile, over In real life...

P7CLEAN V6, Reg3

P7CLEAN V6, Regd

7 r . ' L) - 7 L . ) L) -
0 o ) DM line with LAT
U U
v U .
g g = Weniger, Proc 2nd
:g “é = Fermi Symposium
@ @
- L | |@o12
3 3 -
) o
E 2 o
E E
3 3
[®] W B
U v
< <

0 L l. ' 1 L 'Y i 1 0 L l‘ 1 1 L ' i 1

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time [months] Time [months]

P7S0U RCE{VS, Regd

P7SOURCE V6, Reg3

Accumulated significance [#]
Accumulated significance [#])

A

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time [months] Time [months]

A i 0 L L A

Figure 2: Time evolution of the accumulated significance of the line feature in Gaussian sigma in comparison with the
expectations. The dashed {dotted) lines show the 68%CL (95%CL) bands corresponding to a real signal (green), a
statistical fluke (red) and a steady source in the past (black). The solid line shows the actual behaviour of the feature
in the LAT data. The vertical line indicates the 8'° of March 2012, which we use as reference point for a new trial-free
measurement. In the fit, the line energy is fixed to £, = 129.8 GeV (see text for details). The four panels show results
for the ROIs Reg3 (left) and Reg4 (right) from Weniger [2012], for PTCLEAN_V6 (fop) and PTSOURCE_VE (bottom) class
events. Data until the 22" of February 2013 is taken into account.
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Detectability / Sensitivity

Minimum source strength to achieve detection at some threshold 0 get

e \Weak source case: S; < aB;

1V a By
JT V1+ «

Minimum detectable flux decreases as 1/sqgrt(T) and
depends on B;: “Background-dominated regime”

o
O s, =50

e Strong source case:. S; > aB;

2 Roughly this says that the number
5 det 1 of detected photons must be
St o larger than o2 (times some

T 2 \/1 1/a constant): S,T = ng., > Co3,,

eg. must detect 25 photons for 50.

Minimum detectable flux decreases as 1/T and is
independent of B: : “Photon-limited regime” .
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Detectability / Sensitivity

“Differential sensitivity” plots, i.e. sensitivity in logarithmic energy bands

c

0

,//','Crab—like" source -8
o

|
3

|
\o

I- -t d
| Lo vl Ly

Background
s/ dominated Tl
— 50 hours, So
- --- 5 hours, So
10_1 1()0 10
E [TeV]

Sensitivity for ACT array of 4 telescopes

for 5 and 50 hours of observation.

Low energies: sgrt(10) x improvement.
High energies: 10 x improvement.

1

Differential sensitivity: PTSOURCE_V6, 3 years, min 10 photons per bin

)
£
o
>
H -
w
O
=z A1
:_,10 -
w .
: : I Galactic coords.
1077 |- BaCkground oy whs: g )
~ dOmlnated : . — (0,90)
; Pidiiil L P i iiil JE_ oEees
10° 10* 10°
Energy (MeV)

LAT sensitivity from FSSC site for

different background levels (Galactic or

extra-galactic).

Low energies: big dependency

High energies: almost no dependency.
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Systematic errors

What if assumed value of alpha is incorrect?

e Assume there Is no real source:

Mgy = BT = a1+ 8)BT, nyis = BT

on

where the error in alpha is small: § « 1

e Then: S = B,ad

VT
— V/TSNF v/ aB
V14« .

e This looks like a real signal. Accurate
knowledge of experimental response is
critical. MLE is only as good as the model!
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Review

e ML provides “cookbook” for estimation and
hypothesis testing:

— estimates: maximum of likelihood

— errors: curvature of log-likelihood surface

— TS and significance: is improvement in log-L
over null hypothesis consistent with x2?

e Significance expected to grow as sqrt(T), but
sensitivity can improve as 1/T if photon limited.

e Systematic errors important to consider
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Onwards to LAT analysis...

e | AT ML analysis is fundamentally the same a
what we have seen here (but more complex).

e Channels organized by sky position and energy
(i.e. 3-dimensions). Million channels typical.

e Model is Poisson for each channel with mean
determined by:

— gspatial-spectral model provided by user

— observational response (calculated by
software from IRFs provided by LAT team)

e MLE by software: errors, covariances, TS, etc
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