Diffuse Emission and Map Making

Def 1: Map - a set of pixels (small patches of sky) and a value (counts, flux, etc.) for each pixel.

Eq. 3

\[
\begin{array}{ccc}
1 & 0 & 1 \\
2 & 9 & 3 \\
1 & 7 & 2 \\
1 & 1 & 0 \\
\end{array}
\]

grid of numbers
grey scale image

convenient: g.r.d.
equal area

\[f(1,1) = 7 \]

0-ordered.

Def 2: Map - a discrete sampling \(f(\hat{x}, \hat{y}) \) of a continuous function \(f(x) \) with dense "enough" sample points.

Enough? Nyquist - Shannon => sampling theorem - Fourier

"If a function \(f(t) \) contains no frequencies higher than \(B \) Hertz, it is completely determined by giving its ordinates (values) at a series of points spaced \(\frac{1}{2B} \) seconds apart." - Shannon '49

"Bandlimited" function can be perfectly reconstructed from these samples. True in 2-D also.

So, are these defined the same?

Let \(s(x) \) be the "sky"

\[k(x) \] be PSF (instrument + atmosphere, etc.)

\[p(x) \] be pixel function

Let \(f(x) = s(x) * k(x) * p(x) \)

\[\rightarrow \text{ same.} \Rightarrow \text{ convolution.} \]
Eg. a step function $S(x)$

$p(x)$

$k(r)$

$f(x)$

Exactly the same as $k(x)$

But wait!

What if you have additional information about each photon?

PSF, band pass (energy, p, pdf)

Bruni loses this information.

In optical ask the instrument bins for you.

Fermi does not. => brings it bad.
To Bin or not to Bin:

Do you have everything important in your model?

2. A correct model, just need parameter estimates and errors - formal T analysis no binny.

1. Uncertain model, don't know what we're looking for. Bin and play.

Non-trivial difference

the anomaly - descem

→ find ways to use

your neural net: see

things.

→ most things you see will be wrong.

Must iterate first, get on to next thing.

Now for map making.
Diffuse emission: What are we making a map of?

Unlike a flux \(F \) (erg/s/cm\(^2\)) from an object, diffuse emission \(\Phi \) is flux per solid angle:
\[
\text{erg/s/cm}^2/\text{sr}
\]

obviously \(F = \Phi \theta \)

related by

e.g., Aperture photometry

\[
F = \sum p_j \cdot A_{pix}
\]

flux in pixel/\(A_{pix} \)

\[
\sum F_{ij}
\]

Always keep track of whether you are talking about counts or count per sr.

May be familiar with “specific intensity”, \(I_s \)

\[
[I_s] = \text{Jy/sr} \sim \text{Jy/m}^2/\text{sr} \sim \text{erg/s/cm}^2/\text{sr}
\]

\[
[F_s] \sim [F]
\]

In gamma, we think of binning counts in energy and talk about

\[
\frac{dN}{dE} = \text{counts per energy}
\]
Could bin in \(\ln E \)

\[
\frac{dN}{d\ln E} = E \frac{dN}{dE} \quad \text{counts per log } E
\]

or mult by \(E \)

\[
E \frac{dN}{d\ln E} = E^2 \frac{dN}{dE} \quad \text{energy per log } E
\]

Recall \(I_v \) is \(\text{ergs/cm}^2 \text{/s} \text{/sr} \)

These can all be per \(\text{cm}^2 \) per sec, per sr.

E.g.

\[
I_v = \text{ergs/cm}^2/\text{s}/\text{sr}/\text{sr} \quad (\text{energy per log energy})
\]

\[
E^2 \frac{dN}{dE} \sim I_v.
\]

\[
\frac{dN}{dE} \quad \text{counts} \quad \frac{E}{\text{GeV}} \quad 5.\text{cm}^2\text{-GeV}\text{-sr}
\]

\[
I_v \sim \frac{E^2 dN}{dE} \quad \text{GeV} \quad 5.\text{cm}^2\text{-sr}
\]
How to make a map of diffuse emission.

Want $dN/dE \text{ counts}$ GeV$^{-1}$ cm$^{-2}$ sr

Have exposure (cm2 s) from Fermi tools so need counts in a ΔE bin in dΩ pixel.

Any pixelization is fine, but equal-area pixelizations are nice.

E.g. Healpix

- Each square

- Hierarchical
 - Equal-area
 - Isolatitude problem

Anyway...

Event list

(e.g. dec) (time) (energy)

Counts

$\Delta E \cdot \text{Apix} \cdot \text{Expos.}$

2 with angle data quality cuts.

Easy, right?
Some issues:

- PSF different for front/back converting etc.
- Point sources: mask? Subtract?
- Bad time intervals?
- Sun/Moon?
- Smoothing to same target PSF?

So in more detail:

- Make front and back ESP map, \((\text{mask bad, times 2\times 10^5}) \)
- Subtract sources (for wings also). \((1873 \text{ i.e. 2FM}) \)
- Mask 400 brightest or most variable
 (mesh means remove comb, set exposure to zero). (Mask same by hand)
- Make front, back map & combine.

\[
I = \frac{N_f + N_b}{\text{exp}_f + \text{exp}_b}
\]

- In general, Smooth by \(I = \frac{\text{Smooth}(N_f)}{\text{Smooth}(E_f)} \)

prefered PSF is Gaussian,

\[
\sigma_f = \text{target}
\]

\[
\sigma_p = \sigma_f \text{ simi} \quad \Delta = \sqrt{\sigma_f^2 - \sigma_p^2}
\]

Write .fits file (map + esp in 1st ext.)

Also f, b sep, different FWHM.

Usually use f only at \(E < 1 \text{ GeV} \).

\[5-10 \text{ GeV} \text{ minus } 0.5-1 \text{ GeV} \]