Ground Based
Gamma-Ray Astronomy II

Petra Huentemeyer
Michigan Tech
petra@mtu.edu
What are we trying to measure?

- Directions
 - Maps
 - Extensions
 - Spatial distribution
What are we trying to measure?

- Directions
 - Map
 - Extensions
 - Spatial distribution

- Energy
 - Spectral Energy Distributions (SED)
What are we trying to measure?

- Directions
 - Map
 - Extensions
 - Spatial distribution

- Energy
 - Spectral Energy Distributions (SED)

- Time dependent behavior
 - Periodic behavior
 - Temporary flux enhancements (e.g. flares etc.)
Ground-Based Technologies: 2 Classes

Atmospheric Cherenkov Telescopes

- (VERITAS/H.E.S.S./MAGIC)
- 50 GeV - 100 TeV
- Large Area
- Excellent background rejection
- Good angular resolution
- Small Aperture/Low Duty Cycle
- Study known sources
- Deep surveys of limited regions
- Source morphology (SNRs)
- Fast transients (AGN flares)
- High resolution spectra

EAS Arrays

- Milagro/Tibet/ARGO/HAWC
- 100 GeV - 100 TeV
- Large Area
- Good background rejection
- Improving angular resolution
- Large Aperture & Duty Cycle
- Partial sky survey & monitoring
- Large scale diffuse emission and anisotropy
- Extended Sources
- Transients (GRBs, AGN flares)
- Highest Energies (>10 TeV)
Different Types of Ground Array Detectors

Tibet ASγ
ARGO-YBJ
Milagro
Tibet Air Shower Array (>1990)

- 4300m asl
- Scintillator array
- 497 detectors
 - 0.5m² each
 - 5mm lead on each
- 5.3×10^4 m² (phys. area)
- 3 TeV median energy
- 680 Hz trigger rate
- 0.9° resolution
Argo-YBJ (>2000)

- 4300m asl
- Single layer of RPCs (Resistive Plate Counters)
- 154 detectors
- 6500 m² (phys. area)
- Energies:
 - Gamma rays > 100 GeV,
 - GRB > 10 Gev
 - CR-p 10-200 TeV
 - p/anti-p ratio 300 GeV-1 TeV
- Tens of Hz trigger rate
- 0.1°-1° resolution
Milagro (2000-2008)

- 2600m asl (NM, USA)
- Water Cherenkov detector
- 898 PMTs
 - 450 top/273 bottom
 - 175 outriggers
- 40,000m² area
- 1700 Hz trigger rate
- 0.4°-0.9° resolution
- 2-40 TeV median energy
The Water Cherenkov Technique

- Instrument a volume of water with Photo-Multiplier Tubes
- Detect Cherenkov light from high-energy particle passage through the water.
- Technique used by Super Kamiokande, IceCube, SNO
- Why Water?
 - Clear Cherenkov medium
 - Inexpensive and abundant.
- Instrument a large flat area to see air showers.
- Reconstruct primary particle direction from PMT timing
The Photodetector

8” Hamamatsu R5912, 12 stage, 10^7 gain, QE ~25%
The Water Cherenkov Technique

Air Shower Layer
Muon Layer
EAS Reconstruction

• Identify an ‘event’ through trigger conditions, e.g. require a minimum number of significant signals in your array, or a minimum charge etc.

• Reconstruct the core of the shower through a gaussian fit to the signal strengths in each of your PMTs
Curvature Correction

• The shower front is not a plane, but is curved about the shower core
• Times of individual PMTs are adjusted based on the distance to the shower core
Two Types of Background

1. Cosmic Rays (A₄)
2. Any isotropic background (direct integration)
Hadronic showers contain penetrating component: µ’s & hadrons
 – Cosmic-ray showers lead to clumpier bottom layer hit distributions
 – Gamma-ray showers give smooth hit distributions
Background Rejection Parameter

\[A_4 = \frac{(f_{\text{Top}} + f_{\text{Out}}) \times n_{\text{Fit}}}{\text{mxPE}} \]

mxPE: maximum # PEs in bottom layer PMT

\(f_{\text{Top}} \): fraction of hit PMTs in Top layer

\(f_{\text{Out}} \): fraction of hit PMTs in Outriggers

\(n_{\text{Fit}} \): # PMTs used in the angle reconstruction

S/B increases with increasing \(A_4 \) so analysis weights events by S/B as determined by the \(A_4 \) value of the event

Improves sensitivity by \(~2x\)
Background estimation
“Direct Integration”

• 2 hr integration time: method assumes that the detector acceptance in local coordinates is independent of the trigger rate over this time
• No. of expected background events:

\[N_{\text{exp}}[\text{R.A.}, \delta] = \int \int E(\text{ha}, \delta) R(t) \epsilon(\text{ha}, \text{R.A.}, t) \, dt \, d\Omega \]

• Li & Ma prescription used for significance calculation
• R.O.I. around the crab nebula (+/-2 deg) and Galactic Plane (+/- 2.5 deg)
Background estimation
Milagro Survey

- 6.5 year data set (July 2000-January 2007)
- Weighted analysis using A4 parameter
- Events smoothed by PSF
- Energy range: 4-150 TeV, Median 20 TeV
- Crab nebula 15 \(\sigma \)

Milagro sees the Galactic plane from longitude \(\sim 30^\circ \) to \(\sim 220^\circ \)
Remarks about source fitting

Gaussian + offset/base
Diffuse Emission

A4 – weighted significance map

Flux profiles ← Source subtraction ← Gaussian + offset/base
Diffuse Emission

The Diffuse Galactic Plane

Cygnus region
The Diffuse Flux Measured by Milagro

\[
\text{FrASOR} = \frac{N_{\text{hit}}^{\text{AS}}}{N_{\text{live}}^{\text{AS}}} + \frac{N_{\text{hit}}^{\text{OR}}}{N_{\text{live}}^{\text{OR}}}
\]

Parameter Range: 0.2-2. in 9 bins
Energy Dependence of FrASOR

0.2-0.4
1.0-1.2
1.8-2.0
Energy Dependence of FrASOR
The Cygnus Region: MGRO J2019+37
The Cygnus Region: MGRO J2031+41
The Cygnus Region is complicated