Active Galactic Nuclei

Radio Observations and GLAST

> Greg Taylor University of New Mexico

First GLAST Symposium Feb. 5, 2007

Roger Blandford Marshall Cohen Gabriele Giovannini Marcello Giroletti **Jose-Luis Gomez** Steve Healey Ken Kellerman Joe Helmboldt Matthias Kadler Matt Lister **Benoit** Lott

Al Marscher Greg Madejski Tim Pearson Glen Piner **Tony Readhead Roger Romani** Rita Sambruna Jim Ulvestad Larry Weintraub Ann Wehrle **Bob** Zavala

Acknowledgements

GLAST Gamma-Ray Sky

GLAST (Launch in late 2007)

■ >30x EGRET sensitivity

■ Expect 4000-10,000 Blazars, >200 Pulsars

Radio Target List Selection S_{4.8}>65mJy, $|b|>10^{\circ}$, $\alpha<0.5$ -- CLASS+

- 11,131 sources Healey et al. 2007
- Attempts to fill in PMN holes w/ S5, lower v-selected sources
- Combined Radio All-sky Targetted Eight-GHz Survey: CRATES

3EG Survey Status

>60% High b sources identified as blazars

AGN spectra

Blazar sequence

Ghisellini et al.

Gamma-Ray Emission Mechanisms for Blazars

GLAST will detect thousands of gamma-ray blazars that

can only be resolved by VLBI techniques

BU Blazar Group

Alan Marscher, Svetlana Jorstad, Andrei Sokolov

Questions

Where are the gamma-rays produced?
Do gamma-ray blazars have intrinsically faster jets?

Are there multiple classes of gamma-ray emitting blazars?

Velocity Structures

Evidence for limb brightened jet morphology on the parsec scale is present in some FR I radio galaxies: 1144+35, Mkn 501, 3C 264, M87, 0331+39......

Slide courtesy M. Giroletti

More Questions

- What makes some blazars brighter in gammarays? δ? L? M_{BH}? Spin? Accretion?
- Do gamma-ray flares coincide with the emission of new components?
- Do gamma-ray flares coincide with jet bending?How are jets confined?

Requirements for Imaging Blazar Jets

- High-frequency capability (> 20 GHz) to image jets where they are optically thin
- Full-polarization imaging
- Frequency agility from 330 MHz -> 86 GHz
- Dynamic scheduling for response to gammaray flares at any time of year, and for repeated reliable observations
- Sub-milliarcsecond resolution to detect changes on time scales of days to months, sub-pc scales

VLBA

 High Sensitivity Array (add VLA, GBT, Effelsberg, Arecibo) may be desirable for LLAGNs, TeV blazars

Sample Jet Evolution Imaged with VLBA

 Monthly VLBA imaging of radio galaxy 3C 120 at 22 GHz (Gomez et al. 2000)

VLBA 22 GHz Observations of 3C120

José–Luis Gómez	IAA (Spain)
Alan P. Marscher	BU (USA)
Antonio Alberdi	IAA (Spain)
Svetlana Marchenko–Jorstad	BU (USA)
Cristina García–Miró	IAA (Spain)

Sample Jet Evolution Imaged with VLBA

- Monthly VLBA imaging of radio galaxy 3C 120 at 22 GHz (Gomez et al. 2000)
- What were the gamma rays doing during this period?
- Desire imaging on time scales of weeks or less for z~0.5

VLBI Imaging of Active Galactic Nuclei

- VLBA Imaging Polarimetry Survey (VIPS)
- 1127 sources: S > 85 mJy, 65 > dec > 20, |b| > 10 at 5 GHz in SDSS northern cap
- First epoch observations on the VLBA in 2006
- Identifications and redshifts from SLOAN, HET, Palomar, Keck, ...
- Goals:
- Characterize GLAST sources
- Study Evolution of Radio Sources
- Study AGN environments
- Find more compact supermassive binary black holes

http://www.phys.unm.edu/~gbtaylor/VIPS/

VIPS on the web

1127 in sample11 not detected169 previously imaged

947 newly imaged

http://www.phys.unm.edu/~gbtaylor/VIPS/

Sky Coverage

through DR5, 1,043
have SDSS images;
356 have SDSS
spectra

will get more optical spectra from SDSS-II and ongoing follow-up with Palomar, HET, and Keck currently about 50% complete in redshifts

Simulation of Blazars

Adapted from M. Lister

Simulation of Blazars

Adapted from M. Lister

Which one of these Jets will be detected by GLAST?

Helmboldt et al. 2007

Jet length correlates with host galaxy magnitude

Helmboldt et al. 2007

At their base, Jets tend to have magnetic fields aligned with the jet axis.

This trend should become more pronounced once we can correct for Faraday rotation

Variability brightness temperature

$$\begin{split} & D < c T \\ & \theta < D/R \\ & T_{var} > S\lambda^2/2k \theta^2 \\ & T_{var} = \delta^3 T_{int} >> T_{eq} \\ & \delta_{var} = (T_{var}/T_{int})^{1/3} \end{split}$$

Radio Monitoring programs
UMRAO program - ~200 objects at 5, 8, 15 GHz
OVRO 40 m program - 1000 objects at 15 GHz with noise ~1 mJy and timescales 1-1000 days

Metsahovi program - 22 and 37 GHz
ATA program?

The Very Large Array - 74 MHz -> 50 GHz

Fornax A

Radio Emission from the Lobe of a Nearby Radio Galaxy - Fornax A

XMM: $Fx = 6 \times 10^{-13} \text{ erg cm-} 2 \text{ s-} 1 \text{ at } 1 \text{ keV}$

Summary

- GLAST will increase the γ -ray source catalog by a factor > 30
- Efficient observing mode, improved sensitivity and increased effective area combine to provide superb monitoring of the GeV sky on timescales from hours to years
- Knowledge of the AGN population (and which ones tend to be loud in gamma-rays) will be essential to identify GLAST sources.
- There are hints that EGRET blazers are faster (Jorstad et al. 2001) and more strongly polarized (Lister & Homan 2005)
- GLAST observations combined with complementary radio observations will result in a deeper understanding of:
 - Acceleration and emission mechanisms of Jets
 - Test of the unification model and blazar sequence
 - Jet interactions with the environment
- Many studies mentioned here make heavy use of the VLBA of the NRAO. Additional operations support will be needed to keep this unique facility open.

		(†)		£	<u>#</u>	•	18.1					107	*					19	(1)	10	0	
			81	۴.				5.97		h	e s]	F,	n	d	(W)							
											-											
							4															
							(.															
							4															
i.		ä						ŧ		Ŧ	- 6		÷	\cdot_i	e			ġ			•	٠
4			iii		6	. a	ι¢.		-0	X		1		6	1		-		3	Ť	Ť.	
	2	â.	а.			÷	12			x					*		1	8	C		ú	14
14			63	÷.					-	1	- 14	ŵ:		i.	. g	4	-	-	16	101	in.	а.
÷.,		4	-				-	4	- 76	4	- 95	Ϋ́,	÷	e			1.	-94	2	4	*	07

Maximum $\gamma \sim 30$

Low luminosity, low speed sources are not blazers beamed in the plane of the sky.

Cohen et al. ApJ, in press (astro-ph 0611642)

Superluminal motion (β) correlates with core luminosity

Britzen et al. 2007