Active Galactic Nuclei Radio Observations and GLAST

Greg Taylor
University of New Mexico

First GLAST Symposium
Feb. 5, 2007
Acknowledgements

Roger Blandford Al Marscher
Marshall Cohen Greg Madejski
Gabriele Giovannini Tim Pearson
Marcello Giroletti Glen Piner
Jose-Luis Gomez Tony Readhead
Steve Healey Roger Romani
Ken Kellerman Rita Sambruna
Joe Helmboldt Jim Ulvestad
Matthias Kadler Larry Weintraub
Matt Lister Ann Wehrle
Benoit Lott Bob Zavala
GLAST Gamma-Ray Sky

GLAST (Launch in late 2007)
- >30x EGRET sensitivity
- Expect 4000-10,000 Blazars, >200 Pulsars
Radio Target List

- Selection $S_{4.8} > 65\text{mJy}$, $|b| > 10^0$, $\alpha < 0.5$ -- CLASS+
 - 11,131 sources - Healey et al. 2007
 - Attempts to fill in PMN holes w/ S5, lower ν-selected sources
 - Combined Radio All-sky Targetted Eight-GHz Survey: CRATES
3EG Survey Status

186 High b
--118 Blazar
-- 2PSR/PWN
--66 Non-Blazar (many questionable SRCs)

>60% High b sources identified as blazars

Romani et al
AGN spectra

Blazar sequence

Ghisellini et al.
GLAST will detect thousands of gamma-ray blazars that can only be resolved by VLBI techniques

BU Blazar Group
Alan Marscher, Svetlana Jorstad, Andrei Sokolov
Questions

- Where are the gamma-rays produced?
- Do gamma-ray blazars have intrinsically faster jets?
- Are there multiple classes of gamma-ray emitting blazars?
Evidence for limb brightened jet morphology on the parsec scale is present in some FR I radio galaxies:

1144+35, Mkn 501, 3C 264, M87, 0331+39 ……

Slide courtesy M. Giroletti
More Questions

- What makes some blazars brighter in gamma-rays? δ, L, M_{BH}, Spin, Accretion?
- Do gamma-ray flares coincide with the emission of new components?
- Do gamma-ray flares coincide with jet bending?
- How are jets confined?
Requirements for Imaging
Blazar Jets

- High-frequency capability (> 20 GHz) to image jets where they are optically thin
- Full-polarization imaging
- Frequency agility from 330 MHz -> 86 GHz
- Dynamic scheduling for response to gamma-ray flares at any time of year, and for repeated reliable observations
- Sub-milliarcsecond resolution to detect changes on time scales of days to months, sub-pc scales
High Sensitivity Array (add VLA, GBT, Effelsberg, Arecibo) may be desirable for LLAGNs, TeV blazars
Sample Jet Evolution Imaged with VLBA

- Monthly VLBA imaging of radio galaxy 3C 120 at 22 GHz (Gomez et al. 2000)

VLBA 22 GHz Observations of 3C120

José-Luis Gómez IAA (Spain)
Alan P. Marscher BU (USA)
Antonio Alberdi IAA (Spain)
Svetlana Marchenko–Jorstad BU (USA)
Cristina García–Miró IAA (Spain)
Sample Jet Evolution Imaged with VLBA

- Monthly VLBA imaging of radio galaxy 3C 120 at 22 GHz (Gomez et al. 2000)
- What were the gamma rays doing during this period?
- Desire imaging on time scales of weeks or less for z~0.5
VLBI Imaging of Active Galactic Nuclei

VLBA Imaging Polarimetry Survey (VIPS)
- 1127 sources: $S > 85$ mJy, $65 > \text{dec} > 20$, $|b|>10$ at 5 GHz in SDSS northern cap
- First epoch observations on the VLBA in 2006
- Identifications and redshifts from SLOAN, HET, Palomar, Keck, …
- Goals:
 - Characterize GLAST sources
 - Study Evolution of Radio Sources
 - Study AGN environments
 - Find more compact supermassive binary black holes

http://www.phys.unm.edu/~gbtaylor/VIPS/
VIPS on the web

1127 in sample
11 not detected
169 previously imaged

947 newly imaged

http://www.phys.unm.edu/~gbtaylor/VIPS/
Sky Coverage

- through DR5, 1,043 have SDSS images; 356 have SDSS spectra
- will get more optical spectra from SDSS-II and ongoing follow-up with Palomar, HET, and Keck - currently about 50% complete in redshifts
Simulation of Blazars

Adapted from M. Lister

[Graph showing the relationship between log of gamma-ray flux density and log of 15 GHz radio flux density, with regions labeled A, B, C, and D, and completeness limits.]
Simulation of Blazars

Adapted from M. Lister
Which one of these Jets will be detected by GLAST?

Helmboldt et al. 2007
Jet length correlates with host galaxy magnitude

Helmboldt et al. 2007
At their base, Jets tend to have magnetic fields aligned with the jet axis.

This trend should become more pronounced once we can correct for Faraday rotation.
Variability brightness temperature

\[D < c \tau \]
\[\theta < D/R \]
\[T_{\text{var}} > S\lambda^2/2k \theta^2 \]
\[T_{\text{var}} = \delta^3 T_{\text{int}} \gg T_{\text{eq}} \]
\[\delta_{\text{var}} = (T_{\text{var}}/T_{\text{int}})^{1/3} \]
Radio Monitoring programs

- UMRAO program - ~200 objects at 5, 8, 15 GHz
- OVRO 40 m program - 1000 objects at 15 GHz with noise ~1 mJy and timescales 1-1000 days
- Metsahovi program - 22 and 37 GHz
- ATA program?
Evidence for Helical Fields from Faraday rotation

Zavala & Taylor 2005
The Very Large Array - 74 MHz -> 50 GHz
Fornax A
Radio Emission from the Lobe of a Nearby Radio Galaxy - Fornax A

XMM: $F_x = 6 \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ at } 1 \text{ keV}$
Summary

- GLAST will increase the γ-ray source catalog by a factor > 30
- Efficient observing mode, improved sensitivity and increased effective area combine to provide superb monitoring of the GeV sky on timescales from hours to years
- Knowledge of the AGN population (and which ones tend to be loud in gamma-rays) will be essential to identify GLAST sources.
- There are hints that EGRET blazers are faster (Jorstad et al. 2001) and more strongly polarized (Lister & Homan 2005)
- GLAST observations combined with complementary radio observations will result in a deeper understanding of:
 - Acceleration and emission mechanisms of Jets
 - Test of the unification model and blazar sequence
 - Jet interactions with the environment
- Many studies mentioned here make heavy use of the VLBA of the NRAO. Additional operations support will be needed to keep this unique facility open.
The End
Low luminosity, low speed sources are not blazers beamed in the plane of the sky.

Maximum $\gamma \sim 30$
Superluminal motion (β) correlates with core luminosity

5 GHz, 150 sources

Britzen et al. 2007