WIMP Gamma Rays From the Galactic Center with GLAST and Accelerator Comparison

Aldo Morselli, Andrea Lionetto, Eric Nuss
for the GLAST:LAT Dark Matter and New Physics, Working Group
First GLAST•Symposiü゙m 5-8 February 2007 Stanford University

EGRET data \& Susy models

A.Morselli, A. Lionetto, A. Cesarini, F. Fucito, P. Ullio, astro-ph/0211327

Signal rate from Supersymmetry

gamma-ray flux from

 neutralino annihilation$\left.\left.\phi(E, \Delta \Omega) \propto\left(\frac{\sigma v}{m_{\chi}^{2}}\right)\right) \int_{l . \text { o.s }} \int_{\Delta \Omega} \rho^{2}(l) d l d \Omega\right)$

GLAST Expectation \& Susy models

Point source location for GLAST~ 5 arcmin

Results of simulations for the mSUGRA point with parameters $\mathrm{M}_{1 / 2}=420, \mathrm{M}_{0}=380, \tan \beta=53 \mathrm{GeV}$

The dark matter halo used for the GLAST indirect search sensitivity

$\mathrm{m}_{\chi} \sim 170 \mathrm{GeV}, \Omega h^{2}=0.114$

$\Phi(E \gamma>100 \mathrm{MeV}) \sim 3 \mathbf{1 0}^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ in $30^{0} \times \mathbf{3 0}^{0}$ Map (DarkSusy)

30 deg*30 deg count map obtained from GLAST simulations for a NFW profile with mSUGRA parameters after one year GLAST operation. This DM counts map has to be compared with the expected background as computed with the GALPROP code (on the left)

Differential spectra (GC centered)

Resulting differential spectra from LCC4 and Background simulations for two regions (3deg and 0.1 deg radius) centered at the Galactic Centre.

Supersymmetry introduces free parameters:

In the MSSM, with Grand Unification assumptions, the masses and couplings of the SUSY particles as well as their production cross sections, are entirely described once
5 parameters are fixed:

- $M_{1 / 2}$ the common mass of supersymmetric partners of gauge fields (gauginos)
- m_{0} the common mass for scalar fermions at the GUT scale
- $\mu \quad$ the higgs mixing parameters that appears in the neutralino and chargino mass matrices
- A is the proportionality factor between the supersymmetry breaking trilinear couplings and theyukawa couplings
- tang $\beta=v_{2} / v_{1}=\left\langle H_{2}\right\rangle /\left\langle H_{1}\right\rangle$ the ratio between the two vacuum expectation values of the Higgs fields

Sensitivity plot for 5 years observation of mSUGRA for GLAST for $\operatorname{tg}(\mathrm{b})=55$.

GLAST 30 sensitivity is shown at the blue line and below for truncated NFW halo profile
3σ Sensitivity plot for for GLAST for a truncated (NFW) halo profile

3o Sensitivity plot for for GLAST for a truncated (NFW) halo profile

mSUGRA

Sensitivity plot for 5 years observation of mSUGRA for GLAST for $\operatorname{tg}(\mathrm{b})=55$ and for other experiments. GLAST 3o sensitivity is shown at the blue line and below for truncated NFW halo profile accelerator limits @ $100 \mathrm{fb}^{-1}$ from H.Baer et al., hep-ph/0405210

GLAST, PAMELA, LHC, LC Sensitivities to Dark Matter Search

Sensitivity plot for observation of mSUGRA for a number of accelerator experiments and GLAST for $\dagger g(\beta)=10$. GLAST 3σ sensitivity is shown at the blue line and below a for truncated Navarro Frank and White (NFW) halo profile

G.Isidori and P.Paradisi hep-ph/0605012
large tg β regions favoured in flavour physics:

- suppression of B -> τv
- sizable enhancement of $(\mathrm{g}-2)_{\mu}$
- small non-standard effects in $\Delta \mathrm{M}_{\mathrm{Bs}}$ and $\mathrm{B}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)$

Model independent results for the GC

the background is (as in astro-ph/0305075)

$$
\begin{array}{rlr}
\frac{d N\left(E_{\gamma}, l, b\right)}{d E_{\gamma}} & =N_{0}(l, b)\left(\frac{E_{\gamma}}{1 \mathrm{GeV}}\right)^{\alpha} 10^{-6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{GeV}^{-1} \mathrm{sr}^{-1} \\
N_{0}(l, b) & =\frac{85.5}{\sqrt{1+(l / 35)^{2}} \sqrt{1+(b /(1.1+|l| 0.022))^{2}}}+0.5 & \text { if }|1| \geq 30^{\circ} \\
& =\frac{85.5}{\sqrt{1+(l / 35)^{2}} \sqrt{1+(b / 1.8)^{2}}}+0.5 & \text { if }|1| \leq 30^{\circ}
\end{array}
$$

the gamma flux from WIMP annihilation is:

$$
\begin{aligned}
\phi_{\chi}(E, \psi)= & 3.74 \cdot 10^{-10}\left(\frac{\sigma v}{10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}\right)\left(\frac{50 \mathrm{GeV}}{M_{\chi}}\right)^{2} \sum_{f} \frac{d N_{f}}{d E} B_{f} \\
& \cdot J(\psi) \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{GeV}^{-1} \mathrm{sr}^{-1}
\end{aligned}
$$

and it depends from σv and $M \chi$

Model independent results for the GC

- Assume a truncated NFW profile -
- Assume a dominant annihilationchannel (good assumption except for $\tau^{+} \tau^{-}$)

Differential yield for each annihilation channel

WIMP mass=200GeV

Astroparticle Physics, 21, 267-285, June 2004 [astro-ph/0305075]

Model independent results for the GC

WIMP contribution

 higher than the maximumModel independent GLAST reach (3б)
NFW profile, π^{0} background, $\mathrm{b} \overline{\mathrm{b}}$ annihilation channel

uncertainties:
H column density
$<J(\psi)>=10^{4}$
$\Delta \Omega \sim 10^{-5} \mathrm{sr}$
Effective exposure ${ }^{\text {를 }}$ (per year)
$3.7 * 10^{10} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
4 years exposure 3σ

Model independent results for the GC Results for different dominant annihilation channel

Model independent GLAST reach (3б)
NFW profile, π^{0} background, $\tau^{+} \tau^{-}$annihilation channel

Model independent results for the GC

Galactic Center

HESS Spectrum

Unbroken power-law.

$$
\text { Hard spectrum } \Gamma=2.2
$$ -No evidence for variability on a variety of time scales.

Consistent with
SGR A^{*} to $6^{\prime \prime}$ and slightly extended.

Good agreement between HESS and MAGIC (large zenith angle observation).

EGRET, GLAST, HESS

Conclusion

Discovery Potential for Supersymmetry

- GLAST will explore a good portion of the supersymmetric parameter space
- Search complementary to antimatter, LHC and Direct Search

