

<u>Anita</u> & Olaf Reimer, HEPL & KIPAC, Stanford University 1st GLAST Symposium, Stanford, Febr. 2007

Courtesy: J. Pittard

Massive Stars ...

... are hot (T~3...6 10⁴K), massive (M~20...80 M_o) & luminous (L~10⁶⁻⁵L_o) ... show large mass loss rates in stellar winds: M~10^{-6...-4} M_o/yr ... possess supersonic winds: V(x) \approx V_∞(1-R_{*}/x), V_∞ ~ 1...5x10³ km/s

various kinds of shocks/instabilities:

Intra-Wind interactions:

"clumps", shocks from line-driven instabilities ("chaotic wind model")

- Wind-ISM collisions
- Wind-Wind collisions
- Collective effects of stellar winds:

large scale shocks at core of association (e.g. Bykov et al. 1992)

Motivation

Gamma-rays \Rightarrow *non-thermal relativistic particle distribution required*

A schematic view on a COLLIDING WIND REGION

Wolf-Rayet period characterization and distribution

Period (d)	Characterization	$N_{\rm WN}$	$N_{\rm wc}$
P<1	very-short-period binary	3	1
1 < P < 10	short-period binary	15	9
10< <i>P</i> <100	medium-period binary	8	5
100 < P < 1000	long-period binary	3	3
1000 < P < 10000	very-long-period binary	2	7
10000 <p< td=""><td>extremely-long-period binary</td><td>1</td><td>1</td></p<>	extremely-long-period binary	1	1

$D \sim 3 \dots 10^5 R_0$

Stagnation point (ram pressure balance):

 $\mathbf{r}_{OB} = \mathbf{x} = \frac{\sqrt{\eta}}{1 + \sqrt{\eta}} \mathbf{D} \quad \text{with} \quad \eta = \frac{\dot{\mathbf{M}}_{OB} \mathbf{V}_{\infty, OB}}{\dot{\mathbf{M}}_{WR} \mathbf{V}_{\infty, WR}}$ $\rightarrow \mathbf{\eta} \ll \mathbf{1} \text{ for WR-binaries}$

Magnetic field:

estimated surface magnetic field: B_S~10-10⁴G [Ignace et al. 1998; Mathys 1999; Donati et al. 2001,2002]

>mG-fields at tenths of pc

Constituting the γ **-ray output: Operating processes**

• Inverse Compton scattering of stellar photons (anisotropic!, KN-effects?)

- Relativistic bremsstrahlung
- NN/pp inelastic scattering
- γ -ray absorption due to $\gamma\gamma$ pair product.: $E_{\gamma,cr} \sim 66 (T_4/K)^{-1} GeV, T_4 = T/(5 \ 10^4 K)$
- propagation effects (convection, diffusion): spectral softening in post-shock flow
- cascade models operate if ions reach sufficient high E [e.g. Bednarek 2005,...] -Anita Reimer, HEPL/KIPAC Stanford University -

The massive star population in our Galaxy

• 227 WR-stars, 378 O-stars detected in the Milky Way

[v.d. Hucht '01+'06: 7th cat. gal. WR-star +extens., Maiz-Appelaniz et al.04: Gal. O-star cat]

• WR-binary frequency (incl. probable binaries) ~ 40-50 %

(indications: photometric periodicity, absorption lines/dilution of emission lines, dust form. X-ray excess, radio imaging,...)

How many massive stellar binary systems (here: WR-binaries) will GLAST's LAT be detecting at most?

Sample selection

- gal. WR-binaries → 88 systems [from: van der Hucht '01+'06: 7th catalog of gal. WR-stars + extension]
- distance $\leq 4 \text{ kpc}$ \rightarrow excludes 42 systems

 $[\gamma$ -ray flux dilution factor ~ distance²]

- shock location above star's photosph. → excludes 14 systems
 (x > R*)
 [shock location determined by winds' ram pressure balance]
- orbital period/stellar separation known → excludes 11 systems [required to determine shock location and environment]

⇒ consider 21 WR-binary systems for potential LAT-detectibility

-Anita Reimer, HEPL/KIPAC Stanford University -

Parameters & Assumptions

- IC component only [very likely dominant; Reimer et al. 2006 model used]
- max. possible acceleration rate [mechanism not specified]
- system parameters [L_{bol}, M_{OB,WR}, M_{OB,WR}, V_{∞,OB,WR}, T_{eff}, D_{WR-OB}, d_L]: van der Hucht `01, Markova et al `05, Nugi & Lamers `00, Schaerer & Maeder `92, Cherepashchuk `01
- e=0 assumed [<e>_{obs} low, e_{max}~0.9], i=90° for unknown systems inclination
- B_{*}=100G + magnetic rotator model [Weber & Davis 1967]
- energy (particles) injection: (a) particle number conservation:

Results

LAT-source, if: • $E_{IC,max} > E_{LAT,min}$ • $F_{IC(>100MeV)} > F_{min, LAT,(>100MeV)}$ [used here: 2 × 10⁻⁸ cm⁻²s⁻¹ at |b| < 0.5]

6-7 WR-binaries likely detectable by the LAT

- tend to be very-long-period binaries [otherwise the severe IC-losses cause low E cutoff of e-spectr. → inhibition of GeV-photon prod. in shorter-period binaries], x > 10¹²cm
- all but one are non-thermal radio emitters
- only most nearby (< 1kpc) WR-systems safely LAT-detectable

Uncertainties

- $D_{stellar}$: ~ 0.06...3 × D [$\Delta P \sim 0.5...2 \times P$, e=0 assumpt. $\rightarrow \sim 0.1...1.9 \times D_{stellar}$] $\rightarrow \times 1.2$ more/6 less systems LAT-detectable
- B_{*}-field: 0.1...10 × B_{*} → × 1.2 more/1.5 less systems LAT-detectable
- M_{WR} : 0.1...10 × \dot{M}_{WR} [wind clumping] → no signif. change
- V_{∞} : 0.5...2 × V_{∞} \rightarrow × 1.2 more/6 less systems LAT-detectable
- L_{bol} : 0.5...2 × L_{bol} \rightarrow × 1 more/3 less systems LAT-detectable
- T_{eff} : 10-20% \rightarrow no signif. change
- d_L : 0.5...2 × d_L \rightarrow × 1.3 more/6 less systems LAT-detectable

 $6 \pm \frac{2}{5}$ WR-binaries may be detectable by the LAT

Characteristics of observables Massive binary systems		
Spatial distr.	rather low gal. latitude, conc. towards spiral arms	
Extension?	NO	
Variability?	orbital variations expected (more or less pronounced)	
γ-ray spectrum	softer than synchrotron	
MWL signature Most promising	NT radio in long-P binaries; F _{lim,GHz} < mJy	
candidates	WR 11, 70, 125, 137, 140, 146, 147	

• uniform wind

- neglect interaction of stellar radiat. field on wind structure
 ⇒ restrict to wide binaries
- **cylinder-like** emission region (x >> r, emission from large r negligible)
- radiation field from WR-star negligible (D >> x)
- **photon field** of OB-comp. **monochromatic**: $n(\epsilon) \sim \delta(\epsilon \epsilon_T)$, $\epsilon_T \approx 10 \text{ eV}$ electron distribution isotropically
- convection velocity **V** = **const.**
- magnetic field $\mathbf{B} = \mathbf{const.}$ throughout emission region

Anisotropic inverse Compton scattering

⇒ more power is emitted at large scattering angles
 ⇒ scattered photon energy decreases with scattering angle