Discovery of a Pulsar Candidate Associated with TEV Source HESS J1813-178

> Eric Gotthelf, David Helfand Columbia University

First GLAST Symposium, Stanford University 5-8 February 2007

Introduction

HESS Galactic sources - SNe connection?
Multi-wavelength Study of HESS J1813-178,
Chandra pulsar/PWN detection,
Origin of the TEV Gamma-rays?
Future Work: Pulsar Search.

HESS Detection of SN products From Funk (2006; astro-ph/0609586) HESS Galactic survey source statistics (Classification) Of 21 Galactic HESS source detected over the past 2 yrs : ◆ 6 are known PWNe, 2 non-thermal SNR ("A" Class*) ◆ 2 are probable PWNe/SNRs associations ("B" Class) ◆ 3 have uncertain identifications ("C" Class) • 9 have no known counterpart ("D" Class) ◆1 (2?) are X-ray binaries

* Funk classification by: position match/plausible emission mechanism/ consistent MW picture

Discovery of a unidentified compact TEV source HESS J1813-178

- First Source Detected in the Galactic Plane Survey (Aharonian et al. 2005, 2006),
- Re-observed 9.7 hrs; 340 cts; 14σ detection significance (Funk et al. 2006),
- Compact γ -ray source, Gaussian $\sigma = 2.2' \pm 0.4'$; evidence for a faint extended diffuse tail,
- Power-law Spectrum (0.2 -20 TeV) with $\Gamma = 2.09 \pm 0.08$; $L_{\gamma} = 1.4 \times 10^{34} \text{ erg s}^{-1} @ d = 4 \text{ kpc.}$

MAGIC Spectrum of HESS J1813-178 (From Albert et al. 2006)

G12.82-0.02: a Faint Shell-type Radio SNR Near the Star-formation Region W33

Follow-up X-ray and CO observations (Funk et al. 2006;astro-ph/0611646)

Chandra Observation of HESS J1813-178

X-ray morphology of HESS J1813-178

Putative Pulsar and Nebula Spectrum 2-10 keV ACIS: Power-law Model (Helfand et al. 2007)

#	Pulsar	Remnant	\dot{E}^a	Dist^{b}	$\epsilon^c =$	$F_{PWN}/$	Chandra Observations
			$\times 10^{36}$		L_X/\dot{E}	F_{PSR}	(Exposure; dates for new data)
			(erg/s)	(kpc)	· ·	(2-10 keV)	
1	J0537 - 6910	N157B	481.6	49	0.003	15	Except where noted all pulsars
2	J0534 + 2200	Crab (SN1054)	440.6	2.0	0.03	30	above the following line
3	J05 <u>40 - 6919</u>	SNR 0540-69	146.5	49	0.05	4	are well observed with ACIS.
4	$J1833 - 1$ $S4_{E}$	- G211.5-0.9 -		4.7	· · 0.001		
5	J0205 + 6449	3C58 (SN1181)	27.0	3	0.0004	2-10) keV
6	J2229 + 6114	G106.6 + 2.9	22.5	12	0.001	9 10	
7	J1513 – 5908	$MSH \ 15-52$	^ ^{17.7}	5.0	0.01	5	
8	J16 7 5 5055	1	\bigvee 16.2	6.5	0.001		60 ks 2006-Jun-21
9	J1124 5916	G292.0+1.8	11.9	5.4	0.0002	10	\diamond
10	J1980 à 1992	G54.1+0.3	\otimes \otimes	Δ^5	0.002	5	
11	J1420 A 6048	Kookaburra	₩ 10.4	Y .7	0.004	10	
12	J1846 - 0258	Kes 75		$\mathbf{\mathbf{\hat{v}}}$ 19	0.15	\wedge 23	
13	J0835 4510	Vela SNR	6.9	0.3	0.0001	V 9	-
14	J18 12 1926	G11.2 - 0.3 (SN386	$\frac{6.4}{1}$./F	$= \frac{0.006}{5}$	9	
15	J11 2 6103		4.BMN	V .PSR		0 0 0 -d	36 ks 2006-Dec-28
16	J19021-3252	$\begin{array}{c} \text{CTB 80} \\ \text{CTB 1} \end{array} $	3.7	2.5	0.0005		85 ks AQIS; 65 ks HRC
17	J17094 4429	G343.1-2.3.º	3.4	2.5	0.0001	3	115, 15 ks ACIS; 50 ks HRC
18	J2021 - 3651	$\langle \rangle$	3.4	10(1)	0.002(?)	చ	19, 19 Ks
19	J15K44 - 5025	۱ ۱	3.Z	3.8			14 ks; 2000-08-20
20 21	$J130$ (\aleph - 0429 J1012 + 1011	Ó i	$dE/dt^{0.1}$	$4^{4.0}_{1}$ X 1	0 ³⁶ 'era/	S	10, 14 ks HRQ 2005-NOV-18
$\frac{21}{22}$	J1913 + 1011 J1806 - 1334	×	2.0	-4.0 / 1	0.0008	0	40 ks. Not detected
22	$J_{1801} = 261F$	\land 1	2.9	4.1	0.0008	atthalf	
$\frac{23}{24}$	11016 - 5857	*	2.0	9.3(?)	0.0006(?)	Suneij 1	
$\frac{24}{25}$	11747 - 2958		f** 	2.5	0.00200	1	36 ks (Box-shock Nebula)
$\frac{26}{26}$	J1105 - 6107		עייילאת אותר	2.0		<u>,36</u>	24 ks Not detected
$\frac{20}{27}$	J1119 6127	PULSAR S		PUWER	al/at (10	u erg/s,	<u>61 57 ks 10 ks</u>
28	J1824 - 2452	ms pulsar	2.2	4.9			40 ks: 50 ks. HRC
29^{-5}	J1803 - 2137	. P	2.2	4.0			30 ks 2005-May-04

 Table 1: Pulsars Ordered by Spin-down Power^a (Gotthelf 2004)

G12.82-0.02 Chandra Results

Evidence for a young, energetic pulsar/PWN system: 1) Pulsar candidate at coordinates (J2000): R.A.= 18^h 13^m 35^s17, Dec. -17° 49′ 57″.48, uncert. ≈ 0″.2, 18" from HESS J1813-178 centroid, within error circle, 2) Young system by virtue of SNR association, 3) Non-thermal X-rays detected from point source and nebula, 4) Complex PWN Morphology with $F_{PWN}/F_{PSR} \approx 4.3$, this suggests $\dot{E}_{PSR} \gtrsim 4 \times 10^{36} \text{ erg s}^{-1}$ (Gotthelf 2004), 5) L(2-10 keV) ~ 10^{35} erg s⁻¹ @ 4 kpc implies an spin-down power of $\dot{E}_{PSR} \gtrsim 10^{37} \text{ erg s}^{-1}$ (Possenti et al. 2002). 6) No X-rays detected specifically from SNR,

Near twin to PSR J2229+6114, a 51.6 ms pulsar with similar X-ray and radio morphology and energetics (Halpern et al. 2004).

Origin of the X-rays/Y-rays

The ultimate source of energy for the TEV emission is likely spin-down losses for a rotation-powered pulsar.

Some interesting questions to resolve:

- Is the SNR shell or the PWN responsible for the TEVs?
- Is the same seed population of particles responsible for both the X-rays and Υ-rays?
- What background photons participate in the IC?
- Why is there no X-ray emission from the SNR shell?
- Is the SNR another example of a non-thermal remnant
- ◆ Does the Y-ray emission imply CR accelerations?

Broad-band Spectrum of HESS J1812-178 (Funk et al. 2006; astro-ph/0611646)

Theoretical Models

Y-rays from core: Relativistic e⁻ synchrotron/ inverse Compton model Y/X-rays same population (Aharonian & Atoyan 1999) [Revise using Chandra flux]

γ-rays from shell: Leptonic model (solid line) Hadronic model (dash line)

Future Work: Pulsar Search

Detecting and timing the putative pulsar is crucial to estimating the magnetic field, age, and input energy in order to constrain spectral models:

- Radio pulsar search negative (Helfand et al. 2007),
- Proposed XTE X-ray timing search and ToO monitoring,
- Proposing Chandra deep imaging observation,
- Deeper radio pulse search planned.

HESS J1813-187 is an excellent GLAST pulsar target: $\dot{E}/d^2 \ge 6 \times 10^{35} \text{ erg s}^{-1} \text{ kpc}^{-2}$ (top 14th or higher).