Population synthesis of radio and gamma-ray millisecond pulsars from the Galactic disk

Sarah A. Story Peter L. Gonthier, Hope College Alice K. Harding, NASA-GSFC

FIRST GLAST SYMPOSIUM, STANFORD UNIVERSITY, FEBRUARY 4-8, 2007

Assumptions 1 - Spatial

Pulsars from the Galactic disk - not in globular clusters

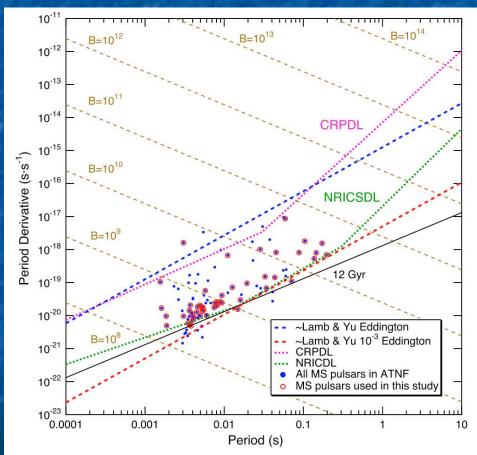
Spatial distribution - Paczynski (1990)

 $n(r) \propto r \exp(-r/R_{exp})$, with $R_{exp} = 4.5$ kpc $n(z) \propto \exp(-z/Z_{exp})$, with $Z_{exp} = 0.20$ kpc

 Supernova kick velocity - Maxwellian with σ = 70 km/s -Hobbs et al. (2005)

Uniform birth rate back to 12 Gyr for m
 Evolution in Galactic potential - Dehnen & Binney (1998) pulse
 Present equilibrium spatial distribution - scale height 480 pc
 Similar to the scale height (exponential) of 510 pc - Cordes & Chernoff (1997) and to LMXBs of 410 pc - Grimm et al. (2002)

All neutron stars remain bound to the Galaxy


0.075 kpc for normal pulsars 265 km/s for normal pulsars D pc

Assumptions II

DETECTED RADIO PULSARS IN ATNF CATALOGUE

Initial B field has a power law distribution with n(B)~B^{-1.5} with B_{min} = 2×10⁸ G

- Po_{min} = 1.3 ms Chakrabarty (2005)
- Birth line is dithered between 1 and 10⁻³ times the Eddington critical accretion ~ Lamb & Yu (2005)
- Most LMXBs accrete at rates lower than the Eddington limit
- Curvature radiation and nonresonant inverse Compton pair death lines -Harding, Muslimov & Zhang (2002)

ATNF pulsar catalogue 1.27 - http://www.atnf.csiro.au/research/pulsar/psrcat/ Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M., AJ, 129, 1993-2006 (2005)

Common Radio Model

For both MSPs and normal radio pulsars

Luminosity model - $L = 2.2 \times 10^{10} P^{-0.95} \dot{P}^{0.38} \text{ mJy} \cdot \text{kpc}^2 \cdot \text{MHz}$ Arzoumanian, Chernoff, and Cordes (2002) (ACC)

Gaussian core beam - ACC

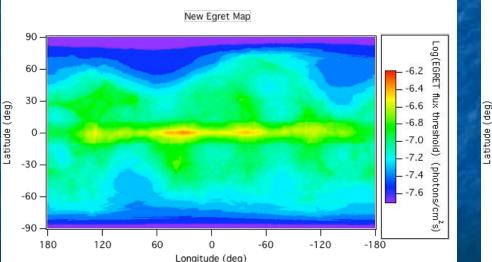
 Gaussian cone with emission heights from Kijak and Gil (1998 & 2003)

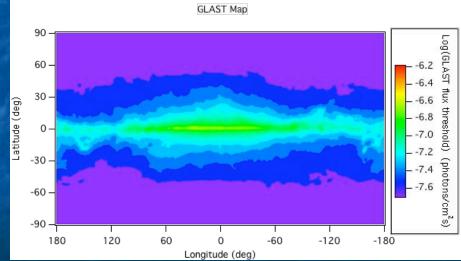
 Here short period pulsars are more cone dominated than ACC model (Gonthier et al. 2007 - astroph/0611236 & 0702097) - support from Crawford et al. (2001 & 2003) & Johnston & Weisberg (2006)

Radio Surveys and Detections

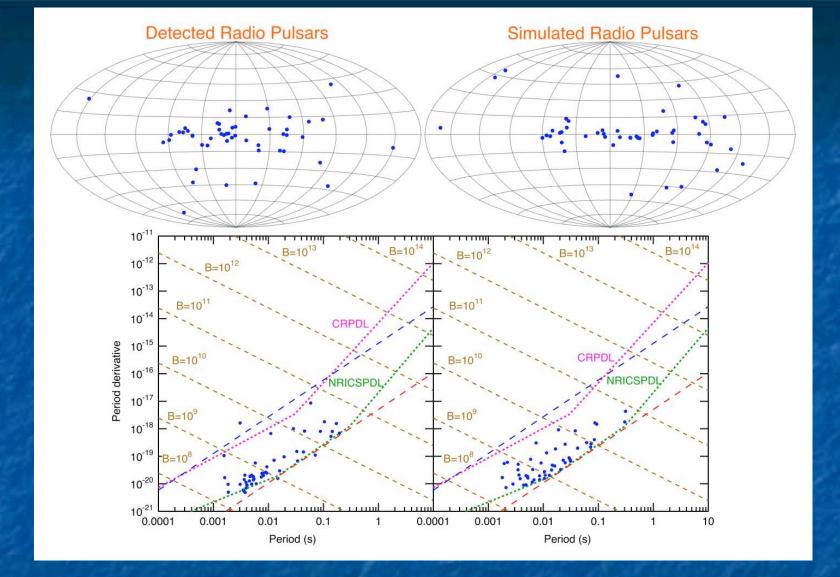
 10 radio surveys detecting a total of 50 MSPs

 Detections and non-detections well reproduced

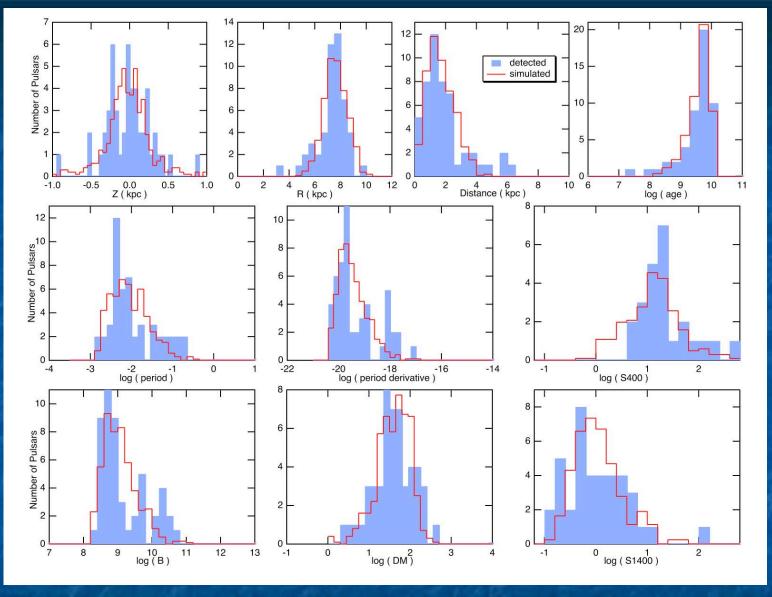

Survey	Det Sim.
Arecibo 3	4 - 6
Arecibo 2	2 - 0
Green Bank 3	0 - 2
Green Bank 2	1 - 0
Molongo 2	0 - 0
Parkes 2	18 - 15
Parkes 1	0 - 0
Jodrell Bank 2	0 - 0
Parkes Multibeam	22 - <mark>2</mark> 1
Swinburne IL	12 - 9


Gamma-ray Model

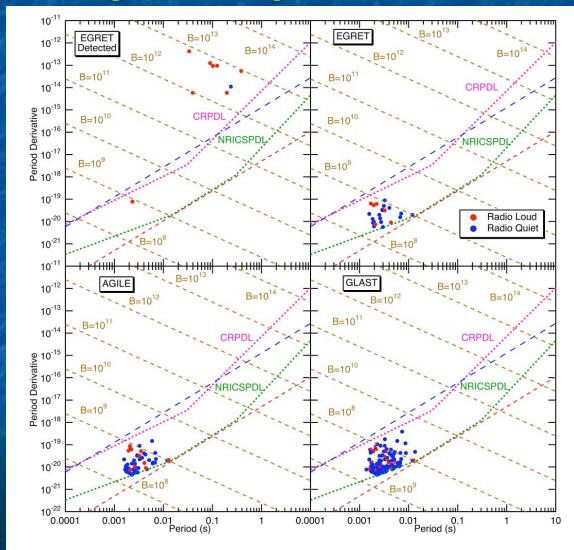
- Curvature radiation pair death line separates γ-ray emission models
- Most MSPs are below curvature radiation pair death line - below pair threshold - pair-starved polar cap (Harding, Usov & Muslimov 2005)
- Inverse Compton scattering some pair cascades
- Unscreened electric field
- Self-limiting curvature radiation from all open field lines
- Since E_{γ} > 100 MeV neglecting synchrotron emission
- Details in Alice Harding's talk


New Gamma-ray Thresholds

EGRET threshold maps with dark clouds
 GLAST maps generated after DC2
 Also all-sky maps for AGILE - but not recently updated



COURTESY OF ISABELLE GRENIER


 Fairly good agreement with spatial distribution - more scatter than detected pulsars

Clustering of detected pulsar around a period of 50 ms is not reproduced

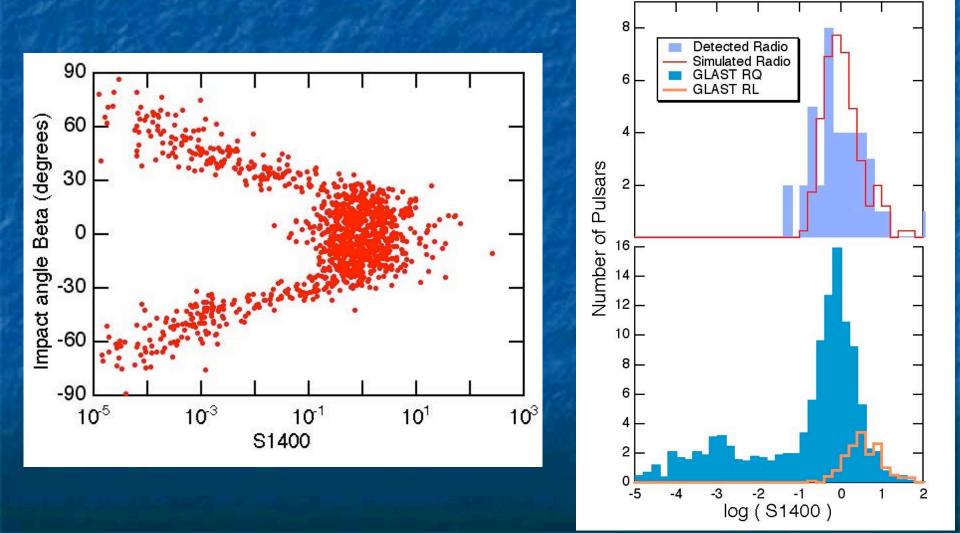
- Histograms represent detected (shaded blue) and simulated (open red) radio millisecond pulsar characteristics
- Good overall agreement
- Some flexibility in luminosity model a range in birth rate and gamma pulsars

γ-ray luminosity increases with decreasing period
 Distribution depends strongly on index of power law describing initial magnetic field

Normalization of Simulation

 Normalization of radio luminosity - birthrate of 2.1 normal neutron stars per century using Parkes MB survey only

 20% variation in radio luminosity - Predicts a MSP birth rate of


4-5 x 10⁻⁴ per century
2.9 x 10⁻⁴ Lorimer (2005)
6.5 x 10⁻⁴ Kiel & Hurley (2006)

Summary Statistics

Instrument	Radio-loud γ-ray pulsars	Radio-quiet γ-ray pulsars
EGRET (DETECTED)	1	?
EGRET (SIMULATED)	6	15-19
AGILE(SIMULATED)	10	34-45
GLAST (SIMULATED)	16	99-131 (35)

But 70% of MSPs are in binaries

GLAST Radio-Quiet Pulsars

Acknowledgements

 National Science Foundation -REU and RUI (AST-0307365) Programs

Michigan Space Grant Consortium

Research Corporation (CC5813)

NASA Astrophysics Theory Program