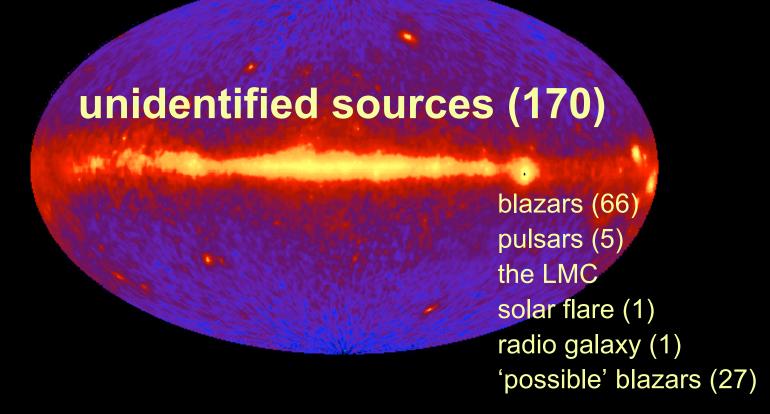
Constraints on Galactic populations of gamma-ray emitters from the unidentified EGRET sources

Jennifer Siegal-Gaskins February 7, 2007 1st GLAST Symposium


Collaborators

Vasiliki Pavlidou
Carolyn Brown
Angela Olinto
Brian Fields

The EGRET Sky

All EGRET events (E > 100 MeV)

271 point sources + diffuse emission

EGRET's Unidentified Sources

pulsars/PWN supernova remnants microquasars etc.

Known Galactic source classes

annihilating dark matter clumps? intermediate mass black holes?

Proposed Galactic source classes

A New Approach

Assume galaxies similar to the Milky Way host comparable populations of γ-ray sources

Use M31 luminosity to place limits on the MW Galactic population!

$$1.6 \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1}$$

 $1.6 \times 10^{-8} \text{ cm}^{-2}\text{s}^{-1}$ upper limit $F_{M31}(> 100 \text{ MeV})$ Blom et al. 1999

$$-1.0 \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1}$$

expected diffuse flux from CRs Pavlidou & Fields 2001

$$0.6 \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1}$$

 0.6×10^{-8} cm⁻²s⁻¹ expected upper limit on point source flux

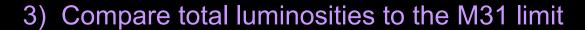
Two Source Samples

from 3EG catalog

Complete	Restricted
- no 3EG ID	- no 3EG ID
- has P1234 flux	has P1234 fluxnot 'possible' or 'likely' artifact
= 168 objects	 no recently suggested counterpart (even if tentative)
	= 119 objects

Updated listing of suggested source identifications compiled by C. Brown: http://home.uchicago.edu/~carolynb/unidentified_sources

The Luminosity Test

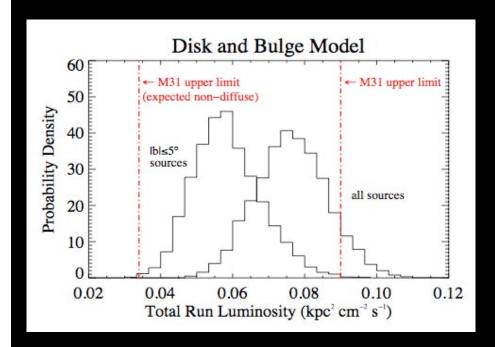

Assume unidentified source population follows MW mass distribution...

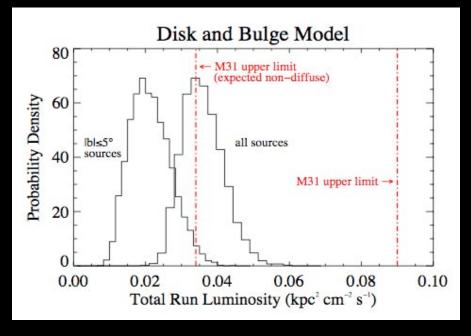
1) For each source:

- integrate mass along line of sight
- probability of distance ←→ integrated mass

2) Monte Carlo:

- assign a distance to each unidentified source
- calculate total luminosity for each realization

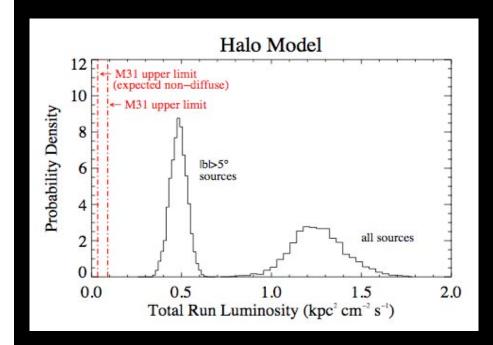


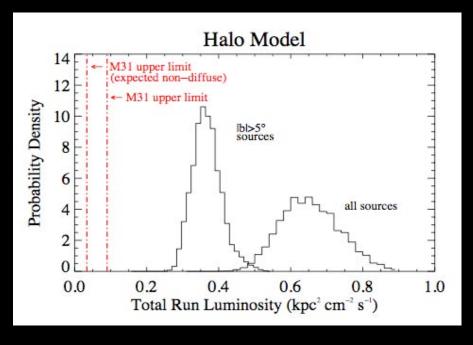


Results: Disk and Bulge Model

Complete Sample

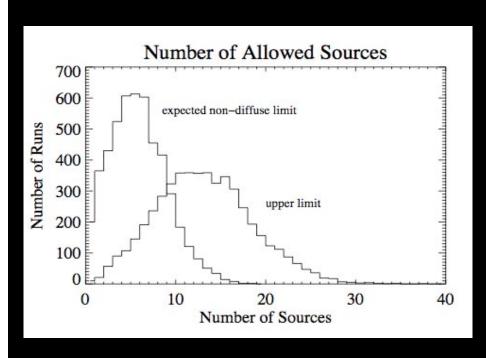
Restricted Sample

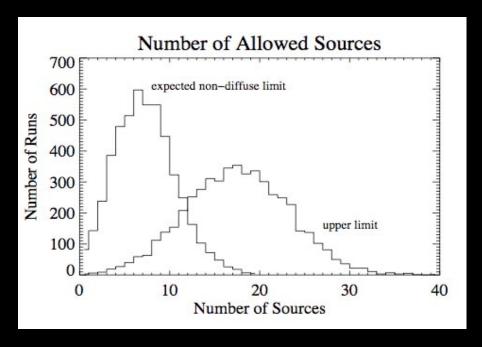




Results: Halo Model

Complete Sample


Restricted Sample



Halo sources: How many is too many?

Monte Carlo adding sources up to luminosity limit

Complete Sample

Restricted Sample

GLAST

New constraints on Galactic populations

- M31 detection
 - test assumption that M31 similar to MW in gamma-rays
 - stronger constraint on luminosity limit + lower bound?
- more sources = better isotropy tests
 - help distinguish Galactic/EG populations
- reduced backgrounds
 - determine origin (Galactic/EG) of newly resolved sources

Summary

Unidentified source populations:

- very few can be in halo
- could all be disk/bulge sources
- could be extragalactic (e.g. blazars)

GLAST will:

- test whether M31 is similar to the MW in gamma-rays
- place stricter limits on the distribution of the unidentified sources
- better determine the G and EG backgrounds and possibly determine the origin of the unresolved source component