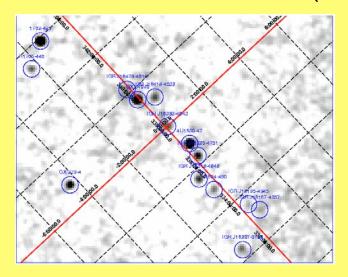
Hard X-ray Sources Detected by INTEGRAL and Implications for GLAST

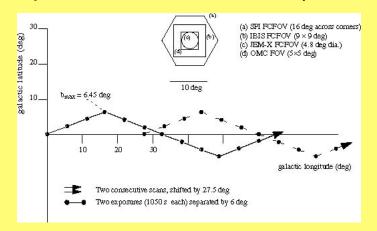
SPACE SCIENCES LABORATORY UNIVERSITY OF CALIFORNIA Berkeley

John A. Tomsick

(UC Berkeley/SSL and UC San Diego/CASS)


Outline:

- INTEGRAL Hard X-ray survey (Talk 3.2 on Monday: Pietro Ubertini)
- Systematic EGRET/INTEGRAL cross-correlation
- Galactic INTEGRAL sources to consider as possible GLAST sources

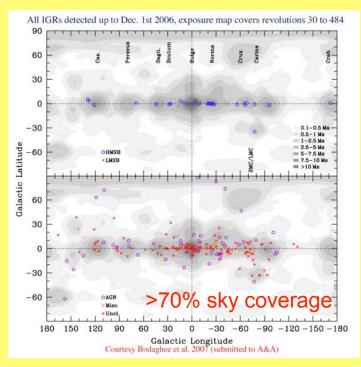

INTEGRAL Hard X-ray Imaging Survey

The primary survey instrument is IBIS (Imager on-Board the INTEGRAL Satellite):

- Coded-aperture mask imaging with ~10x10 degree FOV
- 15 keV 1 MeV (survey is mostly 20-100 keV)
- 12 arcminute resolution (source positions to 1-3 arcmin)

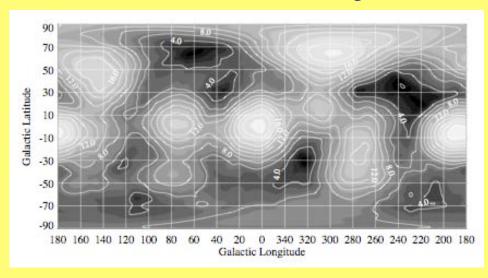
Example 20-40 keV IBIS image from a 300 ks observation of the Norma Region (Tomsick et al. 2004, 2005)

One of the survey observing strategies


Comprehensive results reported:

Bird et al. (2004, 2006, 2007);

Bodaghee, Rodriguez et al. (2007);


Krivonos et al.; Kuulkers et al.; Bazzano et al.

INTEGRAL and EGRET Surveys

INTEGRAL Exp. Map (4 years):

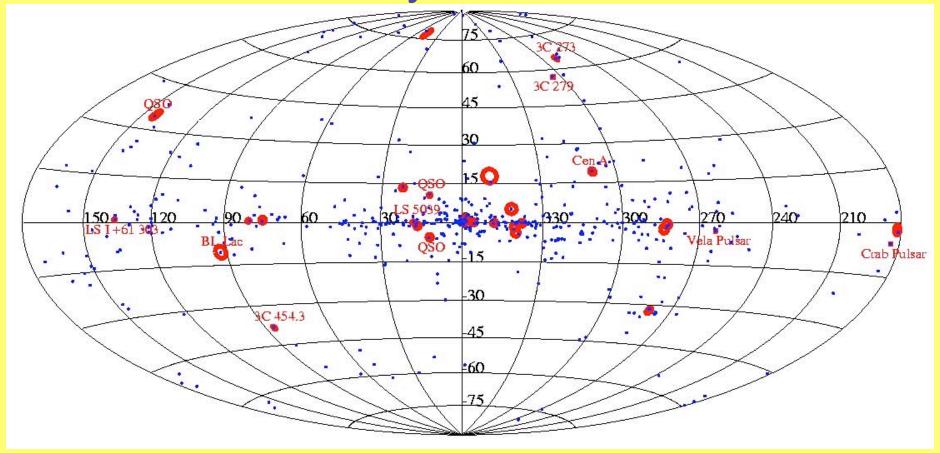
- E = 20-100 keV
- About 10 Ms at Galactic Center
- 499 sources detected (214 new hard X-ray "IGR" sources)
- Flux limit below 1 milliCrab
- 27th general catalog

EGRET Exposure Map (4 years):

- F > 100 MeV
- Units are 108 cm² s (corresponds to about 1.5 Ms of on-axis time at the Galactic Center)
- 271 sources detected
- 3EG Catalog (Hartman et al. 1999)

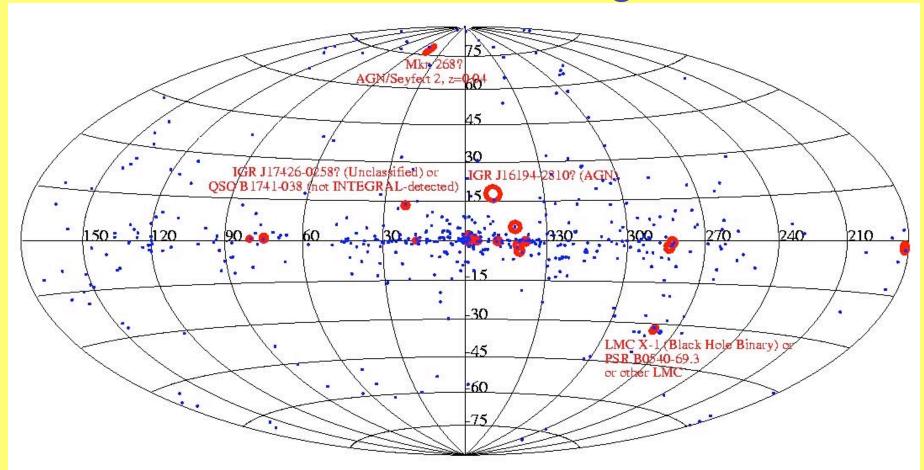
Types of INTEGRAL-Detected Sources

Extra-galactic		
AGN (QSOs, Blazars, Seyferts, etc.)	161 sources (~1/3)	
Clusters of Galaxies?	3 sources	
Galactic		
Low-Mass X-ray Binaries?	87 sources	
High Mass X-ray Binaries?	76 sources (32 new)	
Gamma-ray Binaries	2 sources (LS 5039 and LS I +61 303)	
Cataclysmic Variables/Symbiotics	23 sources	
Rotation-Powered Pulsars	16 sources (B = 10 ¹² - 10 ¹⁵ G)	
Supernova Remnants	4 sources	
Stars (RS Canum Venaticorum)	2 sources	
Molecular Cloud (Sgr B2)	1 source	
Unclassified	123 sources (~1/4)	

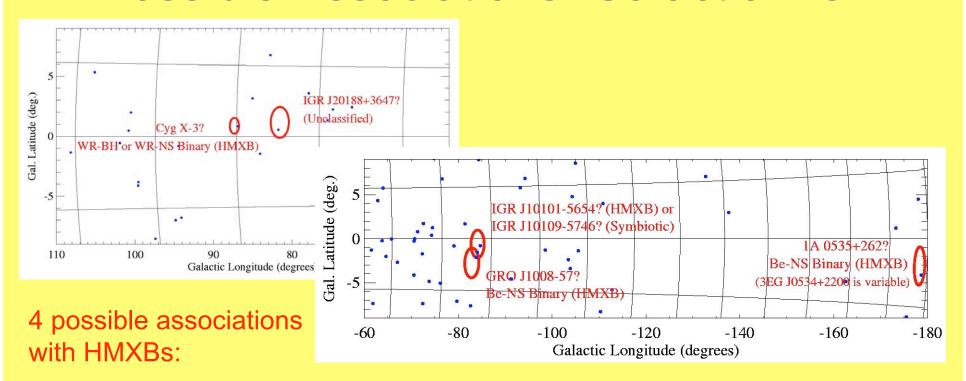

EGRET/INTEGRAL Cross-Correlation

- Error region for each EGRET source is characterized by a 95% confidence radius in Hartman et al. (1999): Θ_{95} .
- Searched for INTEGRAL sources within $2\Theta_{95}$ of the best EGRET positions.
- The values of Θ_{95} are mostly in the 0.4 0.9° range.

Results:

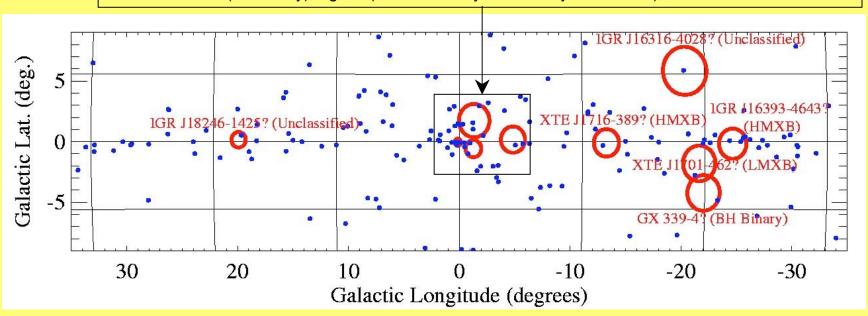

- 31 (of 271) EGRET sources have at least 1 coincident INTEGRAL source.
- 12 of the EGRET sources have good associations ...

Certain or Nearly Certain Associations


- 2 rotation-powered pulsars (Crab and Vela)
- 2 Gamma-ray Binaries (LS 5039 and LS I +61 303)
- 8 AGN/QSOs

Possible Associations: High Latitude

- Source or sources in LMC (Black Hole Binary, Pulsar, ...)
- 2 possible new associations with AGN (Mkn 268, IGR J16194-2810)
- New possibility that 3EG J1744-0310 could be IGR J17426 instead of QSO


Possible Associations: Galactic Disk

- 1A 0535+26: HMXB with a B0IIIe star and an X-ray pulsar (P_{spin} = 104 s, P_{orb} = 111 d). Romero et al. (2001) previously suggested this association.
- IGR J10101-5654: HMXB with spectral confirmation (Masetti et al. 2006)
- GRO J1008-57: HMXB with a B0 star and an X-ray pulsar (P_{spin} = 93.5 s, P_{orb} = 135 d).
- Cyg X-3: HMXB with a WR star and radio jets (P_{orb} = 0.2 d). Black Hole?

Possible Associations: Galactic Center

These 4 have between 2 and 5 X-ray counterparts per source. They include some intriguing possibilities: 1E 1740.7-2942 (BH Binary); Sgr A* (not necessarily detected by INTEGRAL), other LMXBs and HMXBs

- IGR J16316-4028: Unclassified transient. Discovered in 2003 October, but not detected with Chandra in 2004 January.
- 2 possible HMXBs (IGR J16393-4643 and XTE J1716-389)
- 2 possible LMXBs (GX 339-4 and XTE J1701-462)

Galactic INTEGRAL Sources to Consider as Possible GLAST Sources

Rotation-Powered Pulsars:

Radio Pulsars or Pulsar Wind Nebulae

Crab: $F_{qamma} = 2 \times 10^{-6} \text{ ph/cm}^2/\text{s}, F_x = 1000 \text{ milliCrab}$

Vela: $F_{gamma} = 9 \times 10^{-6} \text{ ph/cm}^2/\text{s}$, $F_x = 7 \text{ milliCrab}$

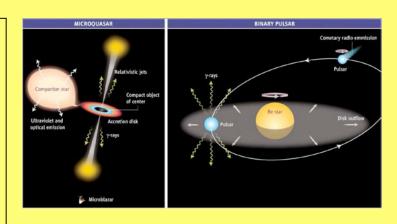
7 other INTEGRAL Pulsars (e.g., PSR J1509-58): $F_x = 1 - 9$ milliCrab

Also, 7 Soft Gamma-Ray Repeaters or AXPs (?)

Gamma-ray Binaries:

• LS 5039

 $F_{gamma} = 5 \times 10^{-7} \text{ ph/cm}^2/\text{s}$


P_{orb} = 26.5 days, extended radio

• LS I +61 303

 $F_{\text{gamma}} = 8 \times 10^{-7} \text{ ph/cm}^2/\text{s}$

P_{orb} = 3.9 days, extended radio

PSR B1259-63 (not INTEGRAL-detected)

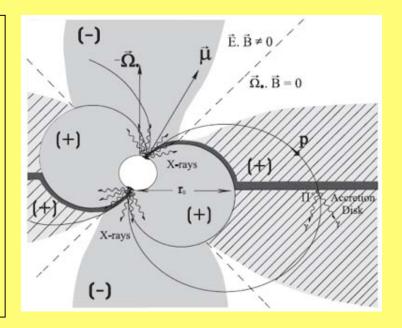
Microquasar or Rotation-Powered Pulsar? (Figure from Mirabel 2006)

Galactic INTEGRAL Sources to Consider as Possible GLAST Sources (HMXBs)

High Mass X-ray Binaries?

Probability for the 4 Galactic Disk HMXB Associations:

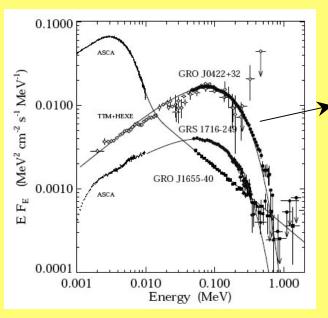
Source	INTEGRAL sources per deg ²	Θ_{95}	Poisson Probability (within 2Θ ₉₅)
1A 0535+26	0.007	0.70 degrees	4%
GRO J1008-57	0.038	0.72 degrees	19%
IGR J10101-5654	0.038	0.67 degrees	17%
Cyg X-3	0.020	0.28 degrees	2%

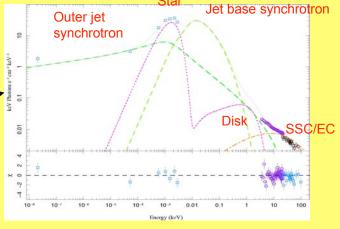

The probability that all 4 associations are spurious is 0.003%.

Other Considerations for HMXBs

- Bias caused by the tendency for supernovae, rotation-powered pulsars, and HMXBs to be found in star-forming regions.
- No obvious gamma-ray/X-ray correlation in variability observed.

However, there are still arguments in favor of HMXBs as gamma-ray sources:


- In addition to these 4 sources, gammaray pulsations from Cen X-3 (P_{spin} = 4.8 s, P_{orb} = 2.09 d) were probably (99.5% confidence) detected (Vestrand et al. 1997).
- There is a model ...



Romero et al. (2001); Cheng & Ruderman (1991)

Galactic INTEGRAL Sources to Consider as Possible GLAST Sources (BHBs)

Black Hole Binaries (microquasars)? GX 339-4, Cyg X-3, 1E 1740.7-2942

Hard State:

Results from Tomsick et al. multi-wavelength study fitted with the Markoff et al. jet model (Migliari et al. 2007).

Transient

Steep Power Law and Hard States (Grove et al. 1998)

Steep Power Law State:

• Extrapolating to >100 MeV gives a predicted flux near 10⁻⁷ ph/cm²/s (easy for GLAST, but spectrum may break).

Summary and Conclusions

- EGRET/INTEGRAL cross-correlation comes up with 31 EGRET sources with possible hard X-ray matches.
- 12 have good associations with AGN/QSOs, Rotation-Powered Pulsars, or Gamma-ray Binaries.
- Of the 19 remaining candidate associations:
 - 4 HMXBs in the Galactic Disk (0.003% probability that this is by chance). Note that INTEGRAL has discovered 32 new HMXBs.
 - 7 associations with newly discovered IGR sources (1 AGN, 2 HMXBs, 4 Unclassified).
 - Transient gamma-ray emission from microquasars may be detectable in 2 different states.