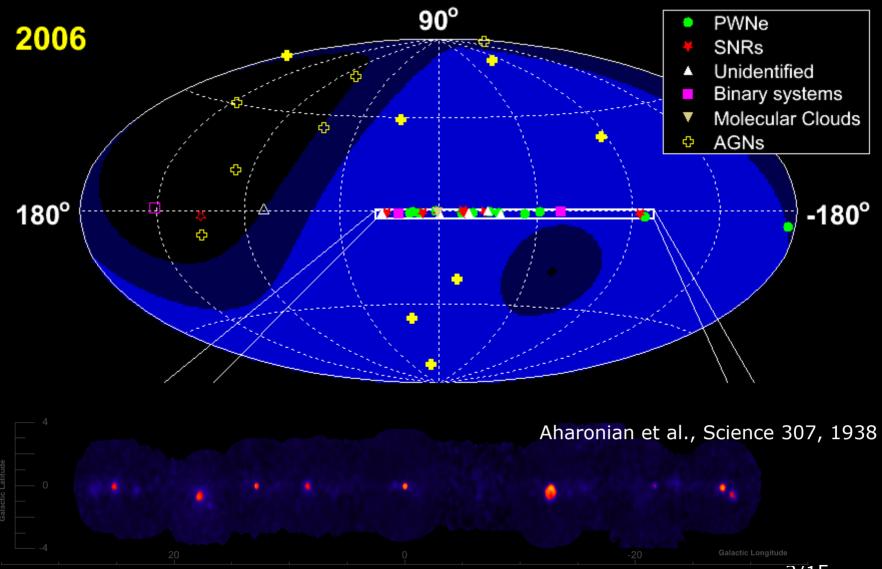
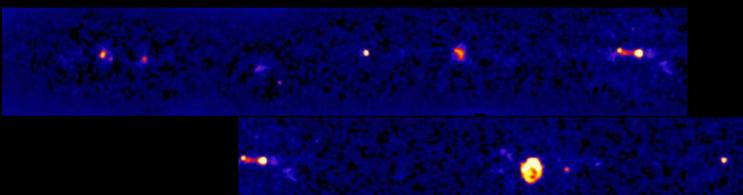


X-ray observations of unidentified H.E.S.S. γ-ray sources

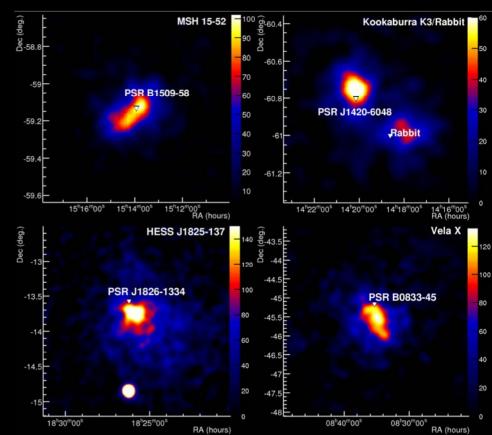
S.Funk


+

J. Hinton, O. Reimer, F. Aharonian, W. Hofmann, S. Wagner, G. Puehlhofer, J. Vink, Y. Moriguchi, Y. Fukui, ...

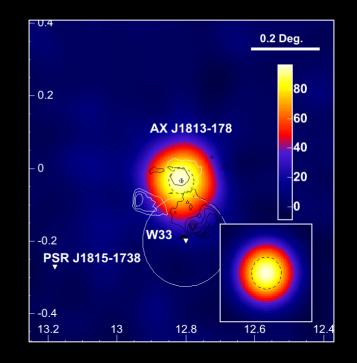

The VHE Gamma-ray Sky

H.E.S.S. unidentified sources

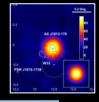

- First 2-3 years of H.E.S.S. operations:
 - > 15 (initially) unidentified γ -ray sources
 - Mostly found in Galactic plane survey
 - Some serendipitously in targeted observations
 - Common properties of these sources:
 - » Positioned along the plane
 - » Most of the sources (at least) slightly extended
 - » Energy spectra rather hard (Photon index ~ 2.2)

What are these?

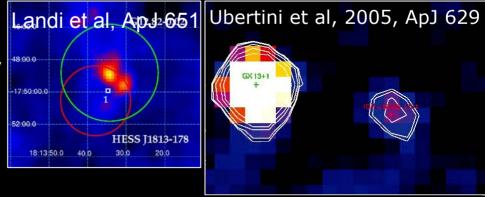
- Detailed program to investigate the X-ray properties of these with *Chandra/XMM/Suzaku*
 - A lot of them connected to energetic Pulsars, \rightarrow PWN
 - Some have no X-ray counterpart even though there have been deep Xray observations
 - Some are connected to radio shell-type SNRs
 » HESS J1813-178
 - » HESS J1640-465

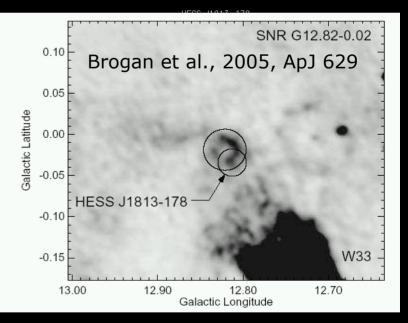


Funk, astro-ph/0701471


• H.E.S.S. properties:

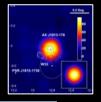
- Located in the Galactic plane (l=12.8, b=0)
- Slightly extended (2.2')
- Typical hard γ -ray emission (Γ ~2.1)
- Flux: 6% Crab
- At first unidentified ...



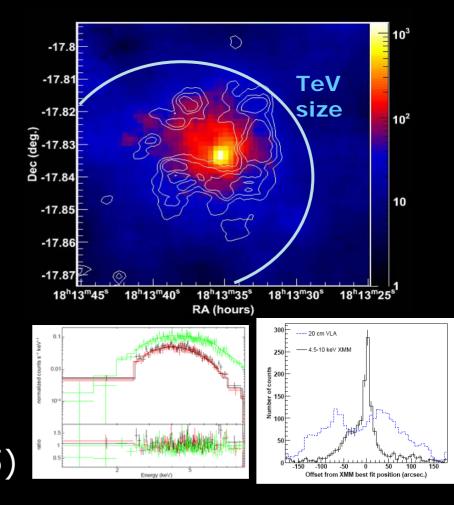


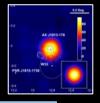
E.g. HESS J1813-178

- The MWL picture:
 - X-rays: coincident ASCA, INTEGRAL, Swift (XRT) source
 - » Hard spectrum (Γ~1.7) up to 40 keV
 - » F_{2-10} : 7x10⁻¹² ergs cm⁻² s⁻¹ » All non-resolved
 - Radio: coincident VLA shell-type SNR
 - » Clearly resolved (3')
 - » Hard spectrum
 - » Distance: >4 kpc from HI absorption data
 - No IR emission (Spitzer)
 - EGRET upper limit

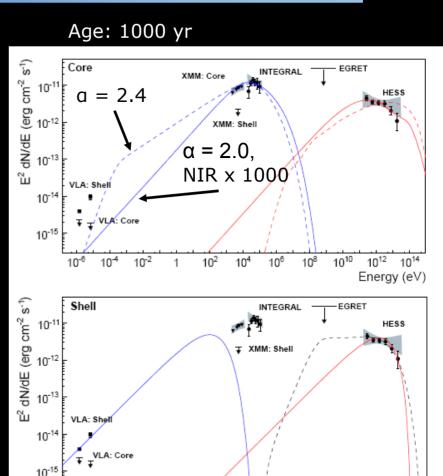


- XMM-Observations:
 - Unresolved X-ray and γ-ray emission from the shell-type SNR or from central source?
 - »γ-ray emission hadronic or leptonic?
 - Try to distinguish by high-angular resolution XMM-Data
 - »18 ksec
 - »Taken Nov 2005




• XMM-Data:

- Extended (21") central source located within the radio shell
- But much smaller than
 H.E.S.S. source (2.7')
- Upper limit on shell
- Spectral analysis:
 - » Highly absorbed (10²³ cm⁻²) powerlaw
 » Hard spectrum (Γ~1.5)
 » Connects to INTEGRAL



E.g. HESS J1813-178

- Origin of the γ -rays?
 - Consider radio shell or central extended object (PWN)
 - Consider both scenarios
 » γ-rays from core
 - X-ray source associate
 - Radio upper limit
 - Need high e⁻ energies for INTEGRAL (up to PeV)
 - γ-ray source larger
 - » γ-rays from shell
 - Connect to radio
 - Leptonic or hadronic?
 - No dense molecular cloud
 - Not able to distinguish ...
 - Chandra for finding pulsar? (P4.5 E. Gotthelf)
 - GLAST will help !!

10²

 10^{4}

10⁻²

 10^{-4}

9/15

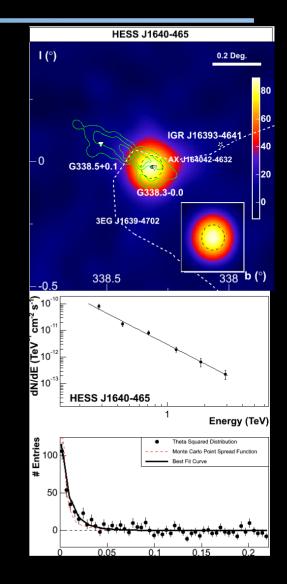
10⁸

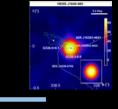
10⁶

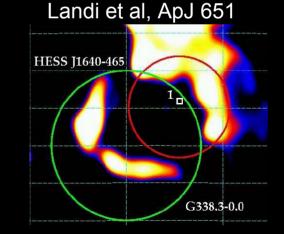
10¹⁰

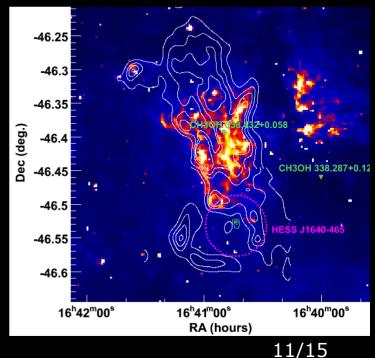
 10^{12}

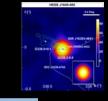
Energy (eV)


1014

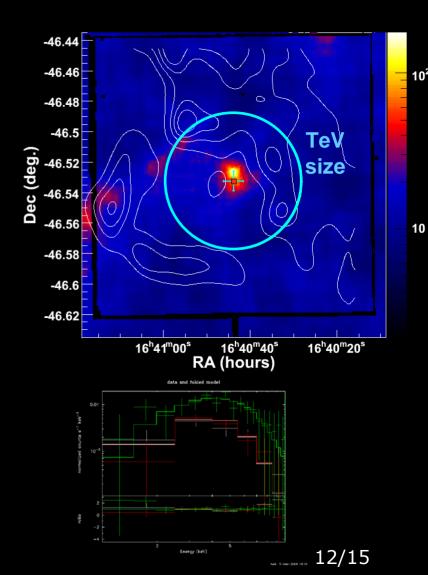

E.g. HESS J1640-465

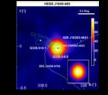

• H.E.S.S. properties:

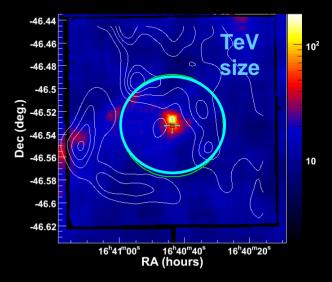

- Located in the Galactic plane (I=338.3°, b=-0.02°)
- Slightly extended (2.7')
- Photon index $\Gamma \sim 2.4$
- Flux: 9% Crab
- $-\gamma$ -ray properties similar to HESS J1813-178 ...

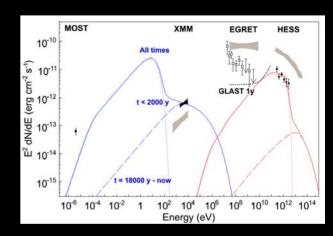


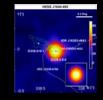
• The MWL picture:


- X-rays: coincident ASCA,
 + Swift (XRT) source
 » No INTEGRAL hard X-rays
 » Again all non-resolved
 - » Softer spectrum (Γ =2.6)
 - » F_{2-10} : 1x10⁻¹² ergs cm⁻² s⁻¹
- Radio: coincident Molonglo shell-type SNR
 - » Clearly resolved (4')
 - » Distance: 8.6 kpc ?
 - Sigma-D relation ... $\ensuremath{\mathfrak{S}}$
- Close-by bright HII-region at 4 kpc probably unrelated

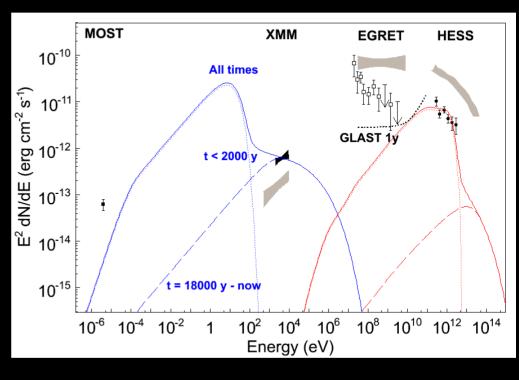

E.g. HESS J1640-465


- The XMM Data:
 - Again ~20 ksec observation
 - Extended (30") faint source at the centre + upper limit from the shell
 - Again much small than H.E.S.S. source
 - Spectral analysis
 » Again strongly absorbed
 » Hard powerlaw (Γ=1.7)
 » F₂₋₁₀: 7x10⁻¹³ ergs cm⁻² s⁻¹
 - Coincident with H.E.S.S. source





- So what does this all tell us?
 - Can play the same game as for HESS J1813-178
 - »Difference: much weaker in X-rays, no INTEGRAL, but EGRET ...
 - » Again cannot distinguish between shell or PWN ...
 - ... but model should explain:
 » Different sizes
 » Low X-ray/γ-ray ratio



- Seems not possible to model with simple one-zone leptonic model
 - Can connect X-rays to γ -rays via different electron cooling timescales (a la HESS J1825-137)
 - X-rays from young electrons, VHE γ-rays from old (relic) electrons
 - Explains naturally different sizes
 - Use time evolution for pulsar spin-down
 - EGRET: only through π^0 -decay or Brems
 - Again: GLAST will help!

- X-ray observations of two VHE γ -rays sources connected to shell-type SNRs
 - Shows extended (PWN-like) sources
 - Cannot distinguish between central source vs shell-like scenario
 - Modelling suggests that GLAST will provide important constraints
 - ... But these examples also show how hard it is to associate counterparts to γ -ray sources ...