Neutral- and charged-pion production resulting from p-p and p-α interactions become significant in solar flares when the accelerated-ion energy spectrum is sufficiently hard. The threshold energies for these interactions are ~300 MeV and ~200 MeV nucleon$^{-1}$, respectively.

The decay of pions produces gamma-ray emission most easily observed at energies >10 MeV. Neutral pions decay into two ~70 MeV gamma rays in the pion rest frame which are Doppler shifted resulting in a broad feature centered at ~70 MeV. Charged pions decay into positrons and electrons which produce gamma-ray continuum emission resulting from bremsstrahlung and annihilation of the positrons in flight.

GLAST will be able to measure the highest-energy portion of this pion-decay emission with excellent sensitivity. Comparison of such measurements with determinations of the accelerated-ion spectrum derived from deexcitation-line measurements at lower energies (as with the GBM) will probe the accelerated-ion spectrum at energies up to several GeV.

We discuss pion production in solar flares and how the decay emission depends on the accelerated-ion spectrum and on the magnetic field and density where the pions decay.

We also discuss neutron production in solar flares since GLAST will also be sensitive to neutrons.
Nuclear Interactions in Solar Flares

Nuclear interactions of flare-accelerated ions mostly occur at the footpoints of magnetic loops.

acceleration site probably in the corona e⁻, p, ³He, α, C, N, O, ...

gamma rays

chromosphere

Nuclear Interactions of flare-accelerated ions mostly occur at the footpoints of magnetic loops.
Nuclear Emission Processes

\[\gamma\text{-ray lines} \]

\[p + ^{12}\text{C} \rightarrow ^{12}\text{C}^*\,4.439 \]

\[p + ^{16}\text{O} \rightarrow ^{12}\text{C}^*\,4.439 + \ldots \]

\[\alpha + ^{\text{4}}\text{He} \rightarrow ^{7}\text{Li}^*\,0.478 \]

\[\alpha + ^{\text{4}}\text{He} \rightarrow ^{7}\text{Be}^*\,0.429 \]

\[\text{neutrons} \]

\[p + ^{\text{4}}\text{He} \rightarrow n + \ldots \]

\[\alpha + \alpha \rightarrow n + \ldots \]

\[p + ^{12}\text{C} \rightarrow n + \ldots \]

\[\text{escape to Earth} \]

\[\text{capture on photospheric } H \rightarrow D + \gamma_{2.223} \]

\[\text{positrons} \]

\[p + ^{12}\text{C} \rightarrow ^{11}\text{C} \rightarrow e^+ \]

\[p + p \rightarrow \pi^+ \rightarrow e^+ \]

\[p + \alpha \rightarrow \pi^+, - \rightarrow \gamma \rightarrow e^+, - \rightarrow \gamma_{511, \text{cont.}} \]

\[\text{pions are produced in interactions of the highest-energy accelerated ions and are observable via their decay radiation} \]
Pion Production Cross Sections

\(p + p \rightarrow \pi^0 + X \)
\(p + p \rightarrow \pi^+ + X \)
\(p + p \rightarrow \pi^- + X \)
\(p + p \rightarrow n + X \)
\(p + p \rightarrow p + X \) (inelastic)

\(p + \alpha \rightarrow \pi^0 + X \)
\(p + \alpha \rightarrow \pi^+ + X \)
\(p + \alpha \rightarrow \pi^- + X \)
\(p + \alpha \rightarrow n + X \)
\(p + \alpha \rightarrow p + X \) (inelastic)
Spectra of secondary products have been calculated using isobaric and scaling models along with pion production data (Murphy, Dermer & Ramaty 1987).
Radiation from Secondary Positrons and Electrons

- **Electrons**: bremsstrahlung continuum

- **Positrons**:
 - bremsstrahlung continuum
 - $e^+ - e^-$ annihilation radiation:
 - after thermalization → 511 keV line*
 - in-flight → continuum from Doppler-broadened 511 keV line

These processes compete with **Coulomb** and **synchrotron** energy losses

❗️ The radiation from these charged secondary electrons and positrons depends on the ambient **magnetic field** and **density**

*most of these photons are Compton-scattered out of the line as they escape the Sun because the pions are produced very deep in the solar atmosphere
The accelerated-ion spectral index affects the shape of the pion-decay photon spectrum:

1. harder spectrum \rightarrow broader π^0 component
2. different mix of charged-π components

The magnetic field and ambient density affect the shape of the pion-decay photon spectrum:

1. low density \rightarrow strong magnetic-field dependence
2. high density \rightarrow weak magnetic-field dependence
The ratio of pion-decay emission to nuclear deexcitation-line emission depends very strongly on the steepness of the accelerated-ion kinetic-energy spectrum.

This ratio can be used to determine the accelerated-ion spectral index.
Neutrons are “detectable” either directly or indirectly

Neutron production reactions

\[
p + p \rightarrow n + \ldots \\
p + ^4\text{He} \rightarrow n + \ldots \\
\alpha + \alpha \rightarrow n + \ldots \\
\{p + ^{12}\text{C}\} \rightarrow n + \ldots \\
\text{and inverse reactions}
\]

Neutrons are produced in the Sun during solar flares. These neutrons can be detected directly at Earth or indirectly, via neutron decay into protons or via gamma-ray emission resulting from the capture of neutrons on photospheric hydrogen.

Directly detected at Earth
- Neutron monitors on Earth
- Interplanetary space

Indirectly detected via neutron-decay protons
- Earth orbit

Indirectly detected via \(\gamma\)-ray resulting from capture on photospheric H: \(n + H \rightarrow D + \gamma_{2.223}\)
Neutron Production (cont.)

Energy Spectra

Neutron lifetime ($\tau_{\text{mean}} = 886$ s) alters the kinetic-energy spectrum with distance from Sun.

Differing neutron velocities result in time-dependent arriving-neutron spectra due to velocity dispersion.
To take advantage of GLAST’s sensitivity to high-energy gamma-ray emission, we will improve several areas of our pion-production computer model:

1. Improved cross sections
 a. treat the production channels near threshold separately rather than the current inclusive treatment
 b. improve treatment at highest energies by including the diffractive portion of the cross section (e.g., Kamae et al. 2004)

2. Extend the treatment to anisotropic accelerated-ion angular distributions

3. Extend the calculations to the higher gamma-ray energies (>3 GeV) to directly explore the shape of the accelerated-ion spectrum at such energies