First International GLAST Symposium Summary

Roger Blandford
KIPAC
Stanford
Some Questions

• What can you do with so few photons?
• Why should I devote my precious observatory time to your future satellite? (Come back after it's launched, if it works!)
• What's new?
• What will be new?
• Where's the physics?
• Why are you doing this?
• Who will win a Nobel prize?
GLAST

LAT
- 0.02 - 300 GeV, ~0.1 energy resolution
- 2.5 sr, 10,000 cm²
- 5° - 5’ resolution
- 3 x 10⁻⁹ cm² s⁻¹ (>0.1 GeV, point source)
- 10,000 sources mostly blazars + unidentified
- 10⁹ photons
- Negligible deadtime
- Cover sky every 3hr

GBM
- 0.01-30 MeV, ~0.1 energy resolution
- 9sr
- Degree resolution
- All sky

Stanford 8 ii 07

Ritz, Michelson

nb AGILE, VERITAS4 in spring

Tavani Kieda
Data and Service Challenges

- Great progress handling simulated data, testing pipelines etc
- Integration with Science Working Groups
- Do we need Science Challenges?
- The Making of Lists
 - 10,000 blazars, 100 pulsars 50/200 GRB/yr(LAT/GBM), 50 SNR/PWN, 10 HMXB….
 - Unidentified?

red: 0.1-0.4 GeV
green: 0.4-1.6 GeV
blue: >1.6 GeV
Stars

- **Sun**
 - Flares
 - Solar minimum→maximum
 - Observe neutrons
 - Radiation hazard
 - *Minutes!*

- **3 HMXB**
 - LSI+61 303
 - *NS-Be*
 - *P=27d*
 - *e ~0.7*
 - *i ~ 60°*
 - PWN orbiting Be excretion disk?

Dubus
Cortina
Hermsen
Jet Physics

- **Blazar**
 - AGN classification
 - Blazar sequence (10^{-4} of galaxies)
 - FR2->FR1?
 - GLAST observe more RG
 - Variability
 - M87
 - Mk 501
 - Contrary evolutions
 - Fukazawa

- **GRB**
 - Ptran, Granot
 - Long - collapsars; short- NS coalescence??
 - Late emission, plateau, chromatic breaks
 - Faster than Blazar jets

- **Jet Physics**
 - Emission mechanism
 - SSC vs EC
 - Opacity, location
 - Bulk Comptonization and Cooling
 - Composition, Structure, Confinement
 - Impact

Stanford 8 ii 07
Pulsar Physics

• **Detection**
 - 100s pulsars?
 - 50 RQ pulsars?
 - 10 MSP
 - RRATS
 - Blind searches

• **How do pulsars shine?**
 - Polar cap vs slot gaps vs outer gaps
 - Locate gamma ray and radio emission
 - Does gamma ray power ~ V?

• **Force free models**
 - Compute pulse profiles for different emission sites and fit to radio, gamma ray observations
 - Is the rotating vector model really supported by observations?
 • **Orthogonal polarization!**
Supernova Remnants

- **Nonthermal accelerators**
 - $>100\text{TeV}$
 - Spectral curvature
- **Hadronic vs leptonic**
 - n problem or B problem?
 - GLAST should decide
 - Local FIR not CMB?
- **Acceleration**
 - PeV-μG
 - DSA vs F2 vs ?
 - If DSA do not need scattering behind shock!
Backgrounds

- **Interplanetary**
 - C\(^{-1}\) starlight

- **Diffuse interstellar**
 - GeV excess? Cygnus TeV? \(\text{Digel, Knodelseder, Abdo}\)

- **Extragalactic gamma ray background**
 - Sum of sources or new component? \(\text{Dermer}\)

- **Extragalactic X-ray background**
 - INTEGRAL reports HEAO-1 spectrum x 1.1

- **Extragalactic stellar background**
 - TeV observations vs Spitzer - limits on Pop III contribution?
 - GLAST will see to greater distance and study evolution

- **Extragalactic cosmic ray background**
 - AGN vs GRB
 - Hard for UHECR to escape either environment

- **Dark matter annihilation background**
 - Lines?
 - *No “no go” theorem*
 - Bump
 - *Validation of DM signal will be a challenge*
 - *Confusion with PWN etc?*

F. Aharonian et al. 2006, Nature 440, 1018 (April 20)

Hartmann

Kuhlen, Wai, Koushiappas
The Multiwavelength Challenge

- **Blazars - radio catalog**,
 - Suzaku, Spitzer, Swift, LMT…
- **Pulsars - timing models**
- **GRBs - Swift**
 - 10yr, 0.25 overlap
- **Suzaku, LMT**
- **IDs**
 - Figure of merit
 - Variability
 - Statistical
- **Discover new sources!!**
Summary

- GLAST links great discoveries of X-ray astronomy to tremendous advances in TeV range
- Poised to address fundamental high energy astrophysics questions through observing AGN, GRB, PSR, PWN, SNR...
- Physical processes are generic - laboratories to study emission mechanisms, RMHD, relativistic plasmas, particle acceleration, transport processes
- Investigations are mostly multi-wavelength over whole 70 octave EM spectrum (+ν, CR, GW)
- Much work - instrumental, computational, observational and theoretical - needs to be done prior to launch