Supernova Remnants and Pulsar Wind Nebulae in the Fermi Era

Collaborators:
D. Castro
S. Funk
Y. Uchiyama
S. LaMassa
O.C. de Jager
A. Lemiere
and others...
PWNe and SNRs

- Pulsar Wind
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms

- Supernova Remnant
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN
 - self-generated turbulence by streaming particles, along with magnetic field amplification, promote diffusive shock acceleration of electrons and ions to energies exceeding 10–100 TeV

Gaensler & Slane 2006
Gamma-Ray Emission from SNRs

- **Neutral pion decay**
 - Ions accelerated by shock collide with ambient protons, producing pions in process: \(\pi^0 \rightarrow \gamma \gamma \)
 - Flux proportional to ambient density; **SNR-cloud interactions particularly likely sites**

- **Inverse-Compton emission**
 - Energetic electrons upscatter ambient photons to \(\gamma \)-ray energies
 - CMB, plus local emission from dust and starlight, provide seed photons

- **Fermi observations**, in combination with multi-\(\lambda \) data, will help differentiate between the two different mechanisms

Ellison et al. 2007
Gamma-Ray Emission from SNRs

Gamma-ray emission depends on (and thus constrains):

- SNR age (need time to accumulate particles)
- acceleration efficiency (can be extremely high)
- electron-proton ratio in injection
- magnetic field (evidence suggests large amplification)
- ambient density (large density increases π^0-decay emission)
- maximum energy limits (age, escape, radiative losses)
Young SNRs

- Young SNRs have fast shocks that clearly accelerate particles to high energies
 - X-ray observations reveal multi-TeV electrons, and dynamical measurements imply efficient acceleration of ions as well

- But...
 - young SNRs generally haven’t encountered high densities
 - maximum energies may be age-limited

- Thus, while very young SNRs should be γ-ray sources, they are not likely to be exceptionally bright

See talk by Stefan Funk
G347.3-0.5/RX J1713.7-3946

- X-ray observations reveal a nonthermal spectrum everywhere in G347.3-0.5
 - evidence for cosmic-ray acceleration
 - based on X-ray synchrotron emission, infer electron energies of >50 TeV

- SNR detected directly in TeV γ-rays
 - γ-ray morphology very similar to X-rays; suggests I-C emission
 - spectrum suggests π^0-decay, but lack of thermal X-rays is problematic

Acero et al. 2009
G347.3-0.5/RX J1713.7-3946

• X-ray observations reveal a nonthermal spectrum everywhere in G347.3-0.5
 - evidence for cosmic-ray acceleration
 - based on X-ray synchrotron emission, infer electron energies of >50 TeV

• SNR detected directly in TeV γ-rays
 - γ-ray morphology very similar to X-rays; suggests I-C emission
 - spectrum suggests π⁰-decay, but lack of thermal X-rays is problematic

• Spectrum in Fermi band very different for leptonic and hadronic scenarios
 - if the γ-rays are hadronic in origin, the emission in the Fermi LAT should be bright; weak or non-detection will favor a leptonic origin

See talk by Stefan Funk
SNRs in Dense Environments

- The expected $\pi^0 \rightarrow \gamma\gamma$ flux for an SNR is

 \[F(> 100\text{MeV}) \approx 4.4 \times 10^{-7} \theta E_{51} d_{\text{kpc}}^{-2} n \text{ phot cm}^{-2} \text{ s}^{-1} \]

 where θ is a slow function of age (Drury et al. 1994)
 - this leads to fluxes near sensitivity limit of EGRET, but only for large n

- Efficient acceleration can result in higher values for I-C γ-rays
 - SNRs should be detectable with Fermi for sufficiently high density; favor SNRs in dense environments or highly efficient acceleration
 - expect good sensitivity to SNR-cloud interaction sites (e.g. W44, W28, IC 443)

1 yr sensitivity for high latitude point source
SNRs in Dense Environments

• The expected $\pi^0 \rightarrow \gamma \gamma$ flux for an SNR is

$$F(> 100\text{MeV}) \approx 4.4 \times 10^{-7} \theta E_{51} d_{kpc}^{-2} n \text{phot cm}^{-2} \text{s}^{-1}$$

where θ is a slow function of age (Drury et al. 1994)
- this leads to fluxes near sensitivity limit of EGRET, but only for large n

• Efficient acceleration can result in higher values for I-C γ-rays
 - SNRs should be detectable w/ Fermi for sufficiently high density; favor SNRs in dense environments or highly efficient acceleration
 - expect good sensitivity to SNR-cloud interaction sites (e.g. W44, W28, IC 443)

See talk by Takaaki Tanaka
G349.7+0.2

• G349.7+0.2 is a small-diameter SNR with high radio surface brightness

• HI absorption measurements indicate a distance of 22 kpc
 - one of the most luminous SNRs in the Galaxy
G349.7+0.2

- G349.7+0.2 is a small-diameter SNR with high radio surface brightness
- HI absorption measurements indicate a distance of 22 kpc
 - one of the most luminous SNRs in the Galaxy
- CO emission reveals nearby MC
 - OH masers at $v = 16 \text{ km s}^{-1}$ confirm SNR shock-cloud interactions

X-ray spectrum is dominated by bright thermal emission (Lazendic et al. 2005)
- consistent with interaction with high density surroundings
- high temperature suggestions fast shocks \Rightarrow efficient particle acceleration
Fermi LAT detects emission associated with G349.7+0.2 (Castro et al. – in prep) - likely evidence of π^0-decay γ-rays from p-p collisions in molecular cloud
Gamma-Ray Emission from PWNe

Gamma-ray emission depends on (and thus constrains):

- PWN age

- maximum particle energy (depends on properties of both pulsar and nebula)

- magnetic field (decreases with time, allowing high-E particles injected at late phases to persist; also introduces loss breaks)

- ambient photon field (synchrotron self-Compton can be important)

- breaks in injection spectrum
Broadband Emission from PWNe

- Get **synchrotron** and **IC emission** from electron population & evolved B field

- Spin–down power is injected into PWN at time–dependent rate
 - results in spectral break that propagate to lower energy with time

- Based on studies of Crab Nebula, there may be two distinct particle populations
 - relic radio–emitting electrons and those electrons injected in wind

- Fermi observations can provide constraints on maximum particle energies via synchrotron radiation, and on lower energy particles via IC emission
Connecting the Synchrotron and IC Emission

- Energetic electrons in PWNe produce both synchrotron and inverse-Compton emission
 - for electrons with energy E_{TeV},
 \[
 \varepsilon_{\text{keV}}^{s} \approx 2 \times 10^{-4} E_{\text{TeV}}^2 B_{-5} \quad \text{synchrotron}
 \]
 \[
 \varepsilon_{\text{TeV}}^{\text{ic}} \approx 3 \times 10^{-3} E_{\text{TeV}}^2 \quad \text{inverse-Compton}
 \]
- Magnetic field strength links IC photons with synchrotron photons from same electrons
 \[
 \varepsilon_{\text{keV}}^{s} \approx 0.06 \varepsilon_{\text{TeV}}^{\text{ic}} B_{-5}
 \]
- For low B, γ-ray emission probes electrons with lower energies than those that produce X-rays
 - γ-ray studies fill crucial gap in broadband spectra of PWNe
Fermi Studies of 3C 58

- Low-frequency break suggests possible break in injection spectrum

- Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum

- Fermi LAT band probes CMB IC emission from ~0.6 TeV electrons
 - this probes electrons from the unseen synchrotron region around $E_{\text{syn}} = 0.4$ eV where injection is particularly complex
• Vela X is the PWN produced by the Vela pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock

• Elongated “cocoon-like” hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet
• Broadband spectrum for PWN suggests two distinct electron populations and very low magnetic field (~5 μG)
 - radio-emitting population will generate IC emission in LAT band
 - spectral features may identify distinct photon population and determine cut-off energy for radio-emitting electrons

See Talk by Marianne Lemoine-Goumard
HESS J1640-465

- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0

- XMM observations (Funk et al. 2007) identify extended X-ray PWN

- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1} \text{ erg s}^{-1}$ $\Rightarrow \dot{E} \sim 10^{36.7} \text{ erg s}^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6 \mu\text{G}$ and $t \sim 15 \text{ kyr}$
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright

Patrick Slane (CfA)
• Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0

• XMM observations (Funk et al. 2007) identify extended X-ray PWN

• Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - \(L_x \sim 10^{33.1} \text{ erg s}^{-1} \Rightarrow \dot{E} \sim 10^{36.7} \text{ erg s}^{-1} \)
 - X-ray and TeV spectrum well-described by leptonic model with \(B \sim 6 \mu \text{G} \) and \(t \sim 15 \text{ kyr} \)
 - example of late-phase of PWN evolution: X-ray faint, but \(\gamma \)-ray bright

• Fermi LAT reveals extended emission associated with source (Castro et al. – in prep.)
 - flux appears consistent with PWN model predictions
Conclusions

• SNRs are efficient particle accelerators, leading to γ-ray emission from both hadronic and leptonic processes
 - the associated spectra strongly constrain fundamental parameters of particle acceleration processes; Fermi LAT observations will help differentiate between emission mechanisms

• SNRs interacting with dense clouds are particularly strong candidates for γ-ray emission
 - Fermi has already detected several, and more are being uncovered

• PWNe are reservoirs of energetic particles injected from pulsar
 - synchrotron and inverse-Compton emission places strong constraints on the underlying particle spectrum and magnetic field

• Fermi LAT has sensitivity and resolution to probe underlying electron spectrum in crucial energy regimes
 - observations of PWNe will complement multi-λ studies to constrain the structure and evolution of PWNe
• Broadband spectrum for PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

• XMM large project (400 ks) to study ejecta and nonthermal emission now underway; images reveal considerable structure and spectral variation
The Surrounding Ejecta: 3C 58

- Chandra reveals complex structure of wind shock zone and surroundings
- Spectrum reveals ejecta shell with enhanced Ne and Mg
 - PWN expansion sweeps up and heats cold ejecta
- Mass and temperature of swept-up ejecta suggests an age of ~2400 yr and a Type IIp progenitor, similar to that for Crab (Chevalier 2005)
- Temperature appears lower than expected based on radio/optical data