Gamma-Ray Probes of the Star-Forming Universe and Cosmic-Ray History

Collaborators
Vasiliki Pavlidou
Tijana Prodanovic
Amy Lien

Brian Fields Fermi Symposium Nov 4, 2009
Gamma-Ray Probes of the Star-Forming Universe and Cosmic-Ray History

Collaborators
Vasiliki Pavlidou
Tijana Prodanovic
Amy Lien

Brian Fields Fermi Symposium Nov 4, 2009
Cosmic Rays
and the
Gauranteed Gamma-Ray Background

diffuse Fermi sky: Porter, Digel, Ackermann talks
Galactic plane dominates
due to cosmic-ray propagation

\[p_{cr} \rightarrow p_{ism} \rightarrow \pi^0 \rightarrow \gamma\gamma \]

working hypothesis: supernovae are engines of cosmic-ray acceleration

star formation \rightarrow supernovae \rightarrow cosmic rays
Cosmic Rays and the Guaranteed Gamma-Ray Background

diffuse Fermi sky: Porter, Digel, Ackermann talks

Galactic plane dominates due to cosmic-ray propagation

\[p_{cr} \ p_{ism} \rightarrow \pi^0 \rightarrow \gamma \gamma \]

working hypothesis: supernovae are engines of cosmic-ray acceleration

star formation \[\rightarrow\] supernovae \[\rightarrow\] cosmic rays

resolved star-forming galaxies: new cosmic-ray laboratory Pavlidou & BDF 01;
Knodlseder, Bechtol, Karlsson talks
Cosmic Rays and the Guaranteed Gamma-Ray Background

diffuse Fermi sky: Porter, Digel, Ackermann talks

Galactic plane dominates due to cosmic-ray propagation

\[p_{cr} p_{ism} \rightarrow \pi^0 \rightarrow \gamma \gamma \]

working hypothesis: supernovae are engines of cosmic-ray acceleration

resolved star-forming galaxies: new cosmic-ray laboratory Pavlidou & BDF 01; Knodlseder, Bechtol, Karlsson talks

but most galaxies unresolved: guaranteed contribution to diffuse background Pavlidou & BDF 02; Prodanovic & BDF 06
Fermi Star-Forming Signal: Cosmic-Ray Source History
Fermi Star-Forming Signal: Cosmic-Ray Source History

- each galaxy:
 - gamma spectrum: pionic (Galactic)

Abdo et al 2009
Fermi Star-Forming Signal: Cosmic-Ray Source History

- each galaxy:
 gamma spectrum: pionic (Galactic)
Fermi Star-Forming Signal: Cosmic-Ray Source History

- each galaxy:
 - gamma spectrum: pionic (Galactic)
 - gamma luminosity: scaling law

\[L_\gamma \sim \Phi_{cr} N_{\text{targets}} \sim (\text{SN rate}) \times M_{\text{gas}} \]

Abdo et al 2009
Fermi Star-Forming Signal: Cosmic-Ray Source History

- each galaxy:
 - gamma spectrum: pionic (Galactic)
 - gamma luminosity: scaling law
 \[L_\gamma \sim \Phi_{cr} N_{\text{targets}} \sim (\text{SN rate}) \times M_{\text{gas}} \]

- cosmic star-forming emissivity
 \[L_\gamma \sim (\text{cosmic SN rate}) \langle M_{\text{gas}} \rangle \]

- cosmic supernova rate
 - today: from cosmic star-formation rate
 - future: directly count SNe to \(z \sim 1 \)

Lien & BDF 09

\(L_\gamma \sim \Phi_{cr} N_{\text{targets}} \sim (\text{SN rate}) \times M_{\text{gas}} \)

\[L_\gamma \sim (\text{cosmic SN rate}) \langle M_{\text{gas}} \rangle \]

Hopkins & Beacom 2006

Brian Fields Fermi Symposium Nov 4, 2009
Fermi Star-Forming Signal: Cosmic-Ray Source History

- each galaxy:
 - gamma spectrum: pionic (Galactic)
 - gamma luminosity: scaling law
 \[L_\gamma \sim \Phi_{\text{cr}} N_{\text{targets}} \sim (\text{SN rate}) \times M_{\text{gas}} \]
- cosmic star-forming emissivity
 - \(L_\gamma \sim (\text{cosmic SN rate}) \langle M_{\text{gas}} \rangle \)
- cosmic supernova rate
 - today: from cosmic star-formation rate
 - future: directly count SNe to \(z \sim 1 \)
 - Lien & BDF 09
- total diffuse intensity
 - \(I_\gamma \sim \frac{c}{4\pi} \int dt \ L_\gamma \)
 - Hopkins & Beacom 2006
Theory vs Observation

Preliminary Status

[Graph showing the relationship between $I E^2$ and E (GeV), with the x-axis ranging from 0.1 to 10 GeV and the y-axis ranging from 10^{-7} to 10^{-5}. The graph includes two curves labeled "star-forming galaxies" and "pure luminosity evol'n".]
Theory vs Observation

Preliminary Status

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
✓ shape: Galactic/pionic feature redshifted

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
Theory vs Observation
Preliminary Status

✓ shape: Galactic/pionic feature redshifted
✓ amplitude: substantial part of preliminary Fermi signal

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
Points: Ackerman talk,
url: http://www-conf.slac.stanford.edu/tevpa09Ackermann090714v2.ppt
Theory vs Observation
Preliminary Status

✓ shape: Galactic/pionic feature redshifted

✓ amplitude: substantial part of preliminary Fermi signal

✓ physics: probes cosmic star formation: source luminosity vs density evolution

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
Points: Ackerman talk,
url http://www-conf.slac.stanford.edu/tevpa09Ackermann090714v2.ppt
Theory vs Observation
Preliminary Status

✓ **shape:** Galactic/pionic feature redshifted

✓ **amplitude:** substantial part of preliminary Fermi signal

✓ **physics:** probes cosmic star formation: source luminosity vs density evolution

<table>
<thead>
<tr>
<th>Shape</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactic</td>
<td></td>
<td>Galactic feature redshifted</td>
</tr>
<tr>
<td>Pionic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substantial</td>
<td></td>
<td>substantial part of preliminary Fermi signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probes</td>
<td></td>
<td>cosmic star formation</td>
</tr>
<tr>
<td>Cosmic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Star formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
Points: Ackerman talk

http://www-conf.slac.stanford.edu/tevpa09Ackermann090714v2.ppt
Theory vs Observation
Preliminary Status

✓ shape: Galactic/pionic feature redshifted
✓ amplitude: substantial part of preliminary Fermi signal
✓ physics: probes cosmic star formation: source luminosity vs density evolution

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
Points: Ackerman talk,
url http://www-conf.slac.stanford.edu/tevpa09Ackermann090714v2.ppt
Theory vs Observation
Preliminary Status

✓ shape: Galactic/pionic feature redshifted

✓ amplitude: substantial part of preliminary Fermi signal

✓ physics: probes cosmic star formation: source luminosity vs density evolution

✓ angular dist: ~isotropic, but should cluster like galaxies

Curves: Pavlidou & BDF 02; Pavlidou, Prodanovic, & BDF in prep
Points: Ackerman talk,
url http://www-conf.slac.stanford.edu/tevpa09Ackermann090714v2.ppt

Ando & Pavlidou 09
Gamma Probes of Cosmic Star-Formation & Cosmic-Ray History

star-forming galaxies ➔ SN ➔ cosmic rays ➔ gamma rays
Gamma Probes of Cosmic Star-Formation & Cosmic-Ray History

- **Guaranteed** and important diffuse Fermi signal!

 spectral feature: redshifted Galactic (pionic) peak

 signal amplitude: probes of cosmic star formation

star-forming galaxies ➔ SN ➔ cosmic rays ➔ gamma rays
Guaranteed and important diffuse Fermi signal!

spectral feature: redshifted Galactic (pionic) peak

signal amplitude: probes of cosmic star formation

Fermi resolved star-forming galaxies will calibrate

Milky Way diffuse, LMC, starbursts, M31?
star-forming galaxies ➔ SN ➔ cosmic rays ➔ gamma rays

- Guaranteed and important diffuse Fermi signal!
 - spectral feature: redshifted Galactic (pionic) peak
 - signal amplitude: probes of cosmic star formation
- Fermi resolved star-forming galaxies will calibrate
 Milky Way diffuse, LMC, starbursts, M31?
- star-forming gammas are “foreground” for other sources
 - guaranteed: AGN; hoped-for: dark matter, structure-formation cosmic rays
Gamma Probes of Cosmic Star-Formation & Cosmic-Ray History

- Guaranteed and important diffuse Fermi signal!
 spectral feature: redshifted Galactic (pionic) peak
 signal amplitude: probes of cosmic star formation
- Fermi resolved star-forming galaxies will calibrate
 Milky Way diffuse, LMC, starbursts, M31?
- star-forming gammas are “foreground” for other sources
 guaranteed: AGN; hoped-for: dark matter, structure-formation cosmic rays
- cosmic-ray feedback on cosmology
 energy/pressure/ionization source, primordial lithium problem
Gamma Probes of Cosmic Star-Formation & Cosmic-Ray History

- Guaranteed and important diffuse Fermi signal!
 - spectral feature: redshifted Galactic (pionic) peak
 - signal amplitude: probes of cosmic star formation
- Fermi resolved star-forming galaxies will calibrate
 Milky Way diffuse, LMC, starbursts, M31?
- star-forming gammas are “foreground” for other sources
 guaranteed: AGN; hoped-for: dark matter, structure-formation cosmic rays
- cosmic-ray feedback on cosmology
 energy/pressure/ionization source, primordial lithium problem
- stay tuned!