Deciphering the gamma-ray background: star-forming galaxies, AGN, and the search for Dark Matter in the GeV Band.

Vasiliki Pavlidou
Einstein (Fermi) Fellow

Brandon Hensley (Caltech)
Jennifer Siegal-Gaskins (Ohio State)

Shin’ichiro Ando (Caltech)
Brian Fields (U. Illinois)
T. Prodanovic (U. Novi Sad)
Luis Reyes (U. Chicago)
Tonia Venters (Goddard)
The gamma-ray sky

4 days of Fermi LAT
Credit: LAT collaboration
What is making the GeV isotropic diffuse background?

- Guaranteed sources: active galaxies, star-forming galaxies
- Hypothesized source classes: galaxy clusters, dark matter cusps
How to break the degeneracies?

\[C_{\ell}^{\text{tot}} = f_{\text{EG}}^2 C_{\ell}^{\text{EG}} + f_{\text{DM}}^2 C_{\ell}^{\text{DM}} \]

\[f_{\text{EG}} + f_{\text{DM}} = 1 \]

\[I_{\text{DM}} = I_{\text{tot}} \left(\frac{C_{\ell}^{\text{EG}} + C_{\ell}^{\text{DM}}}{C_{\ell}^{\text{EG}} + C_{\ell}^{\text{DM}}} \right) \]

\[I_{\text{EG}} = I_{\text{tot}} \left(\frac{C_{\ell}^{\text{EG}} - C_{\ell}^{\text{DM}}}{C_{\ell}^{\text{EG}} + C_{\ell}^{\text{DM}}} \right) \]

At minimum:

\[C_{\ell}^{\text{DM}} = \frac{C_{\ell}^{\text{EG}} C_{\ell}^{\text{tot}}}{C_{\ell}^{\text{EG}} - C_{\ell}^{\text{tot}}} \]

Hensley, Siegal-Gaskins & Pavlidou 2009
On arXiv soon!
Deconvolve the components!

We could measure the annihilation spectrum!

Hensley, Siegal-Gaskins & VP 09
What about the foregrounds?

Some people’s foreground is other people’s signal!

- If deconvolution can be done:
 I no longer have to carefully model foreground to obtain DM spectrum from residuals

- A deconvolved extragalactic source intensity spectrum encodes physics about the parent population
What physics can we learn about AGN?

- How much diffuse gamma-ray emission due to all AGN, everywhere, ever?
- Physics input to this calculation:
 - Energy spectrum
 - Luminosity function
 - Duty cycle
 - Extragalactic UV, optical, IR backgrounds!

Credit: J. Buckley 1998 (Science), illustration: K. Sutliff
What physics can we learn about galaxies?

- **How galaxies make gamma rays:**
 - Gas makes stars
 - Stars blow up and make supernova remnants
 - Supernova remnants accelerate cosmic rays
 - Cosmic rays collide with gas, make pions,
 - Pions decay into gamma rays

- **How much diffuse gamma-ray emission due to all galaxies, everywhere, ever?**
 Physics input to this calculation:
 - Cosmic star formation history (how much star formation, gas)
 - Cosmic-ray -- gas interactions
 - Cosmic-ray acceleration, confinement, escape

Learn about B-field at high-z!

VP & Fields 02, Ando & VP 09
Conclusions

1. **Gamma-ray background is a multi-component emission.** starforming galaxies, blazars, galaxy clusters, dark matter ...

2. Combining intensity energy spectrum + anisotropy energy spectrum may allow us to DECONVOLVE the components.

3. For DM: can measure annihilation spectrum *independently of any model for the foreground components*! Measure mass, annihilation channel.

4. Deconvolution can turn foregrounds into signal: extract physics of e.g. blazar or star-forming galaxy population.

5. Deconvolution not feasible in all cases BUT: if feasible...