The VERITAS Survey of the Cygnus Region of the Galactic Plane

A. Weinstein for the VERITAS Collaboration

University of California Los Angeles
Motivation and Context

• Efficient method of searching for new sources over a large region

• *Un-biased* indication of source population

• Southern hemisphere well-surveyed
 – HESS Galactic plane survey, ~14 sources in initial survey

• Best limits in northern hemisphere sky: HEGRA’s Galactic plane survey
 – -2° < l < 85°, flux upper limits: 15% Crab to several Crab

• Size and choice of region based on
 – VERITAS sensitivity and FOV
 – Material distribution, density of potential TeV γ-ray emitters (SNR, PWN, high E-dot pulsars, EGRET unidentified sources..)
Survey Observation Strategy

Made possible by good VERITAS off-axis sensitivity

• Survey covers region $67^\circ < l < 82^\circ$, $-1^\circ < b < 4^\circ$
• Available observing period: April-June, Sep.-Nov.
• ~6 hrs effective exposure before followup.
• ~112 hours in base survey, ~56 hours followup.
One Interesting Region

- Partial survey map, generated with standard threshold extended source analysis
- Includes all data in survey region taken to this point
- Exposure uneven due to followup (more intensive followup around VER J2019+407 than around TeV J2032+4130)

- VER J2019+407
 - New VERITAS source

- TeV J2032+4130
 - Known source, first detected by HEGRA
 - Likely associated: MGRO J2031+41, 0FGL J2032.2+4122 (LAT pulsar)
 - Detection: >5σ at nominal position (no trials)
VER J2019+407

- Early follow-up candidate

- Recent (last six weeks) follow-up treated as an independent search
 - 0.25° radius search region
 - 0.6° wobble, position indicated by earlier data

- 8.5σ (~7.5σ) pre-(post-)trials in Fall 2009 data alone;

Preliminary position: RA: 304.97° ± 0.017° (stat), Dec: 40.79° ± 0.023° (stat)
Preliminary extension: 0.16° ± 0.028° (0.11° ± 0.027°) for the major (minor) axis

- Derived from 2D Gaussian (convolved with VERITAS PSF) fit to uncorrelated excess map (Fall 2009 data only)
- Flux on the order of 2-5% Crab
VER J2019+407 in context

- In northwest region of Gamma Cygni SNR (G78.2+2.1)
 - What exactly is it?
- PWN?
 - core ~0.5° away from Fermi pulsar
 - Association seems unlikely
- VERITAS emission does overlap well with radio contours in northwest
- Shock-cloud interaction?
 - Plenty of CO in southeast, not much in northwest
 - Two partial shells in HI, one in northwest (Ladouceur and Pineault 2008, A&A 490, 197)
 - Cloudlets? Enough mass in HI?
- Scenario: SNR was expanding in bubble blown by progenitor star; now hitting dense material in ISM.
VER J2019+407 in context

Core of VERITAS excess

In 4-10 keV band, pair of faint hard X-ray sources under core (part of C2, Uchiyama et al.)

 - Soft X-ray emission belt (1-3 keV) from north to southeast
 - shock interacting with cavity wall of ambient clouds?
 - Identifies hard sources in north with shocked dense cloudlets
 - Poss. Ne IX emission lines in soft emission in north
 - Cloudlet density? (need limit on GeV emission)

ASCA X-ray map
4.85 GHz radio contours
Cygnus Region: Broad Limits

- No hotspots above 5σ post-trials in base survey

- Much stronger limits than available in the past from HEGRA

- Preliminary Flux Limits (99% CL, all points in survey below 3σ)
 - $<3\%$ Crab above 200 GeV (point source)
 - $<8.5\%$ Crab above 200 GeV (0.2° radius extended source)

- New un-biased indication of northern hemisphere source population; qualitatively different
 - HESS survey: out of 14 sources in $-30^\circ<l<30^\circ$, saw 12 sources with fluxes $\geq 5\%$ Crab above 200 GeV
Summary and outlook

• Detection of 2 sources with VERITAS survey technique and followup observations
 – 1 discovery: VER J2019+407
 – TeV J2032

• Further followup observations in survey region ongoing.

• Difference in source density and strength (survey limits, current detections) indicates population difference between northern and southern hemispheres.

• Prospects for future:
 – Joint analysis (morphology, cross-correlation studies) with Fermi data in the region.
BACKUP
VER J2019+407 in context
Analysis Strategy

- **Data analysis:** ring background estimation, four simultaneous, pre-defined analyses

<table>
<thead>
<tr>
<th></th>
<th>“Standard” source</th>
<th>“Hard source”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point source</td>
<td>Size > 90 p.e.</td>
<td>Size cut > 150 p.e.</td>
</tr>
<tr>
<td></td>
<td>$\Theta^2 < 0.013^\circ$</td>
<td>$\Theta^2 < 0.013^\circ$</td>
</tr>
<tr>
<td>Extended source</td>
<td>Size > 90 p.e.</td>
<td>Size cut > 150 p.e.</td>
</tr>
<tr>
<td></td>
<td>$\Theta^2 < 0.055^\circ$</td>
<td>$\Theta^2 < 0.055^\circ$</td>
</tr>
</tbody>
</table>

- **Multiple configurations over a 2.5 year period**
 - ~30% of base survey data taken with 3-telescope configuration
 - Spring followup data taken with a different 3-telescope configuration.
 - Most recent followup data taken with new 4-telescope array configuration

- **Zenith angle variation**
 - Range of zenith angles per pointing (affects sensitivity estimates).
 - >80% of all survey pointings are at an average zenith angle <25°.
Sensitivity estimation

- Use simulated survey grid
 - average zenith angle of 20°
 - Blank survey fields for background
 - Inject simulated photons (spectra between 2.5 and 2.0, varied source extent)

- Estimates are
 - Conservative (zenith angle, configuration variations)
 - Consistent with standard VERITAS sensitivity curves/calculated “effective” exposure time.

- Sensitivity estimates based on achieving >5σ pre-trials (trigger for followup)

<table>
<thead>
<tr>
<th>Analysis type</th>
<th>Spectral Index</th>
<th>Extension</th>
<th>Flux (Crab > 200 Gev)</th>
<th>Flux (Crab > 500 Gev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std point</td>
<td>2.5 (2.0)</td>
<td>None</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>Std extended</td>
<td>2.5 (2.0)</td>
<td>0.2° gaussian radius</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flux (Crab > 500 Gev)</td>
</tr>
<tr>
<td>Hard point</td>
<td>2.0</td>
<td>None</td>
<td><0.063</td>
<td></td>
</tr>
<tr>
<td>Hard extended</td>
<td>2.0</td>
<td>0.2° gaussian radius</td>
<td><0.16</td>
<td></td>
</tr>
</tbody>
</table>
One Interesting Region

- Partial survey map, generated with standard threshold extended source analysis
- Includes all data in survey region taken to this point
- Exposure uneven due to followup (more intensive followup around VER J2019+407 than around TeV J2032+4130)

- VER J2019+407
 - New VERITAS source

- TeV J2032+4130
 - Known source, first detected by HEGRA
 - Likely associated: MGRO J2031+41, OFGL J2032.2+4122 (LAT pulsar)
 - Detection: >5σ at nominal position (no trials)
VER J2019+407 in context

VERITAS excess
4.85 GHz NRAO Radio contours

- In northwest region of Gamma Cygni SNR (G78.2+2.1)
 - What exactly is it?

- PWN? Possible, but
 - ~0.5° away from Fermi pulsar
 - Association seems unlikely

- Shock-cloud interaction?
 - VERITAS emission overlaps well with radio contours in the northwest

No visible emission to the southeast

LAT PSR J2021+4026
VERITAS Survey of the Cygnus Region of the Galactic Plane

A. Weinstein, UCLA
Instrument design:
- Four 12-m telescopes
- 499-pixel cameras (3.5° FoV)
- FLWO, Mt. Hopkins, Az (1268 m)

Specifications:
- Angular resolution ~ 0.1° (1 TeV)
- Energy resolution ~ 15-20%

Fall 2009 Sensitivity:
- 1% Crab @ 5σ
 - 30 hrs

Prior Sensitivity:
- 1% Crab @ 5σ
 - 50 hrs
- 5% Crab @ 5σ
 - ~ 2.5 hrs