

2FGL: The Second Fermi LAT Catalog

Construction and Content

Toby Burnett University of Washington For the *Fermi*-LAT collaboration

2011 Fermi Symposium Rome, Italy May 9, 2011

Strong source high latitude example: SED plots Dermi Gamma-ray Space Telescope **MRK 421** Pulsars fit with exponential cutoff 10 Power law NEW 10-1 10-10 10-11 10-11 10-12 10-12 10-13 1 10 100 10-13 10 100 Energy (GeV) Energy (GeV) 10-9 10-10 10-11 10-12 0-13 NEW 10 100 Energy (GeV) Circles are 3°, 100 MeV PSF ('front' section) Use log parabola (varies by a factor of 30 with energy!) if better fit

Measuring point source properties: maximize likelihood

- □ Model of the sky must account for *all* photons www
 - o PSF (poster by Roth, Rando, Wood)
 - Aeff (poster by Ackermann, Atwood, Rando)
 - Galactic, isotropic diffuse including CR (talk by J-M Casandjian) 1/8 degree grid, pixels centered on plane
 - o Earth limb


```
Test Statistic: TS=-2log(L<sub>fit</sub>/L<sub>null</sub>)
max
```


We conservatively choose only sources with TS>25.

- □ Initial list: use 1FGL supplemented with:
 - PGWave, MRfilter: image based
 - MST (minimal spanning tree): pattern of high energy photons
- Likelihood, using current model
 - Test each of 3.1 M 0.1° deg pixels with a trial point source, (index 2), record the corresponding TS.
 - Look for clusters with max TS>10, use as seed for new iteration
- □ Efficiency checks:
 - Test with Monte Carlo generated sources
 - Recheck by applying PGWave

Use the *pointlike* tool applied between 100 MeV and 300 GeV.

□Initial list: use 1FGL as seeds supplemented with:

- o PGWave, MRfilter: image based
- MST (minimal spanning tree): pattern of high energy photons

□Create model with point and extended sources, galactic, isotropic and limb diffuse

 Require exponential cutoff for all LAT pulsars, use log parabola if improves fit

□Fit the entire sky including updating positions (procedure detailed below) □Create 'residual TS' map:

- $\circ~$ TS for new point source (index 2) at each of 3.1M 0.1° pixels
- $\circ~$ Look for clusters with max TS>10, use as seeds in new model

□Provide all with TS>10 to stage II

Extended source templates

Details about the sky model

- Tessellate sky using HEALPix: 1728 regions
- □ Each ~5° square pixel defines:
 - Center of circular regions for:
 - data (5 deg)
 - sources (10 deg)
 - sources inside are varied; those outside fixed to results of previous iteration
 - Note ~x3 overlap of data: not independent
- **Diffuse component normalizations free**
- □ Iteration procedure:
 - Each region fit (full likelihood maximized) independently
 - Each fit remeasures point source positions: Apply updates between cycles.
 - Check changes in log(L): iterate until none changes by more than 10 (8-10 iterations required)

Colors: HEALPix index

Basic principle: the likelihood function, as a function of the position of a source, is an estimator of the position, with the curvature defining the resolution.

Error ellipse defined by 95% contour (2.45σ) . Plot shows contours, and results of fit to quadratic surface

Source confusion

Example of overlapping sources resolved by PGWave: missed source close (0.65°) to a stronger source

Analysis of nearest neighbor distribution (for high latitudes) indicates missing fraction of 5.5%, vs. 7.6% for 1FGL

Yellow: intermediate iteration Red: added in final iteration

- Since localization errors are determined by the PSF, itself defined by data, a consistency check is to compare the distribution of deviations of associated sources with the expected
 - Preliminary indications are that in fact we need to scale the error ellipse dimensions by a factor of 1.1, as in 1FGL.
- Some apparent associations, or pulsar identifications, are far off due to diffuse confusion; the final catalog positions for 2 such LATidentified pulsars will be fixed to the radio locations.

Stage I Summary

Most sources apparently associated with diffuse structures probably result from inadequate representation of the diffuse itself

Galactic center is complicated! See talk by T. Porter Orion molecular cloud: poster by S. Digel & F. Giordano

Use the standard tool *gtlike* in binned mode

- □Accept all 3499 TS>10 sources from stage I
- Similar iterative scheme, but with 933 overlapping
- regions chosen to equalize number of sources
- □Refit spectra and diffuse normalization
- □Fit pulsars with exponential cutoff
 - $\circ~$ Everything else with power law: try log parabola
 - Retain all with *gtlike* TS>25 when generating model
 The *pointlike* fit and TS generally agree well,
 but some scatter for low values.
- Generate:
 - \circ Table
 - spectral plots
 - \circ light curves
 - \circ associations

277 1FGL sources are not represented. Recall that they were only used as seeds at the start of the new process

- Some reasons:
 - New requirements for localization
 - Extended sources were represented by more than one point source
 - Improved galactic diffuse model
 - There, but not significant enough (flared during first 11 months)
- Dominant effect is new fitting procedure: application of current procedure (especially now using binned vs. unbinned *gtlike*) to 1FGL accounts for nearly all.

□ The 5 LAT pulsars that are not (DC) detected are put in 'by hand'

2FGL almost ready to go, with following features

- □Much improved diffuse representation, new limb component
- □~1888 sources, vs. 1451 1134 for (revised)1FGL
- □12 extended sources
- □Pulsars fit with exponential cutoff, others log parabola if appropriate
 - better characterization of sources, improved fits to nearby weaker sources

□Better source finding efficiency: both detecting faint sources and resolving nearby sources

But: is not perfect, D. Thompson will next discuss caveats

Backup, or discarded for now

Checking for missing sources: PGWave

PGWave determines that this is two close sources

TS map is rather distorted

An overview of the territory

Blowup, showing before (yellow) and after (red).

After split

Contribution from the Earth's limb

Required at celestial poles, low energies only