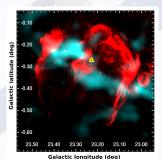


Unveiling the origin of gamma-ray emission towards the SNR W41 region with H.E.S.S. and Fermi-LAT


Jérémie Méhault[‡] – Petter Hofverberg° – Matthieu Renaud[‡] Johann Cohen-Tanugi[‡] – Fabio Acero[‡] – Fabrice Feinstein[‡] Marie-Hélène Grondin† – Marianne Lemoine-Goumard*

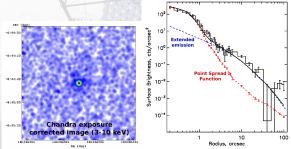
For H.E.S.S. and Fermi-LAT collaborations


‡LUPM - Montpellier °MPIK - Heidelberg †IAA - Tübingen *CENBG - Bordeaux

May 11th 2011

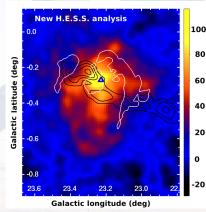
Fermi Symposium – Roma

Background on supernova remnant W41



Composite image. VLA 20 cm radio data[4], GRS ¹³ CO data (75-82 km/s)[5]. Triangle: pulsar candidate

position[2][3]


[1]Leahy et al. 2008, AJ, 135, 167 - [2]Tian et al. 2007 ApJ 657 L25 - [3]Misanovic Z. et al. 2011, astro-ph:1101.1342v1 - [4]Helfand et al. 2006, AJ, 131, 2525 - [5]Jackson et al. 2006, ApJS, 163, 145

- Distance(HI CO): 4.2 kpc [1]
- \triangleright Age: $6.10^4 2.10^5$ yrs
- ▶ Associated with 10⁵ M_☉ GMC
- New PSR candidate.
- $ightarrow \dot{E}_{estimated} \simeq 4.10^{36} \ erg/s$ [2][3]

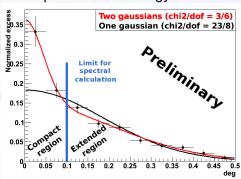
Chandra image and radial profile on X-ray data [3].

Detected TeV emission with H.E.S.S.

- Discovered by H.E.S.S. (2005)[1]
- 2011: new Xeff analysis [2](PSF=0.06°)
- now 52 live hours
 (vs. 7.5 hours in 2005 [3])
 - Black: GRS ¹³CO data integrated around W41 velocity
- White: VLA radio data
- Triangle: pulsar candidate

TEV MORPHOLOGY NOT COMPATIBLE WITH CO

[1]Aharonian et al. 2005, Science 307, 1938 [2]Dubois et al. 2006, APh, 32, 73 [3]Aharonian et al. 2006, A&A, 636, 777

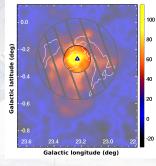

Radial profile centred on pulsar candidate

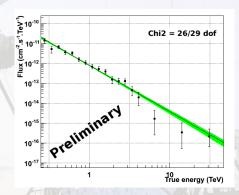
No E-dependent morphology ⊳ Radial profile on all energy band

TeV peak position:

$$b = 23.24^{\circ} \pm 0.01^{\circ}_{stat}$$

 $b = -0.26^{\circ} \pm 0.01^{\circ}_{stat}$

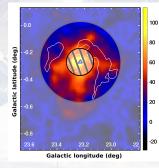

TEV PEAK COMPATIBLE WITH PULSAR CANDIDATE


- 2 components needed:
 - ▶ Compact: $\sigma_{intrinsic} = 0.04^{\circ} \pm 0.01^{\circ}_{stat}$
 - Extended: $\sigma_{intrinsic} = 0.20^{\circ} \pm 0.03^{\circ}_{stat}$

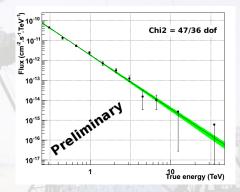
EXTENDED EMISSION DETECTED

Spectral analyses - Compact source

Spectra for $r < 0.1^{\circ}$



• Index: $2.33 \pm 0.09_{stat}$


• Flux: $\phi(\text{1 TeV}) = (0.80 \pm 0.06_{stat}) \times 10^{-12} \text{ cm}^{-2}.\text{s}^{-1}.\text{TeV}^{-1}$

No indication for cutoff

Spectral analyses - Annular region

Spectra for $r \in [0.1^{\circ}; 0.3^{\circ}]$

• Index: $2.70 \pm 0.08_{stat}$

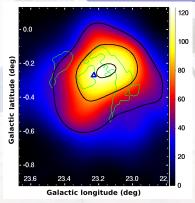
ullet Flux: $\phi(1 \text{ TeV}) = (1.8 \pm 0.1_{stat}) imes 10^{-12} \text{ cm}^{-2}.\text{s}^{-1}.\text{TeV}^{-1}$

No indication for cutoff

Energetic aspects on TeV emission

Using Mattana et al. (2009) results

- If pulsar candidate associated with W41: d ≃ 4 kpc
- X-ray nebula luminosity:
- $L_X = (\sim 1.5) \times 10^{33} \text{ erg/s}$

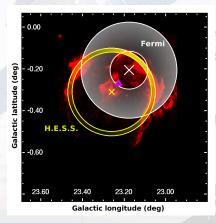

IF PULSAR CANDIDATE PRODUCES THE γ -RAY EMISSION OF...

	Compact Source	Extended Source
L_{γ} (erg/s)	$(2.97\pm0.78)\times10^{33}$	$1.23 \pm 0.26 \times 10^{34}$
estimated $ au_c$ (yr)	$\sim 5.2 \times 10^3$	$\sim 10.2 \times 10^3$
<i>W41's age:</i> \sim 10 ⁵ <i>yr</i>	younger than SNR	younger than SNR

IN ANY CASE PSR CHARACTERISTIC AGE YOUNGER THAN SNR?

Fermi-LAT data analysis for $E_{\gamma} > 1$ GeV

Source detected at TS = 158



- ROI size: 15°
- Preliminary 2FGL sources within 15°
- 24 months data:
 ▷ rocking angle < 52°
 ▷ zenith max < 100°
- IRFs: P6-V11-DIFFUSE
- PointLike analysis

Fermi TS map. TS contours: 40, 80, 120.

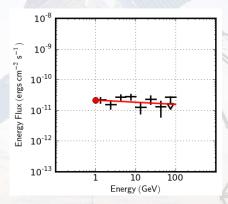
- Gaussian model of W41
- \triangleright Extension: $\sigma_{intrinsic} = 0.16^{\circ} \pm 0.07^{\circ}$
- ho TS of extension: TS_{ext} \simeq 30

HESS-Fermi morphological comparison

VLA 20cm radio map.
Gray ring: GeV extension.
Yellow ring: TeV extended component.
Positions with errors marked with crosses.

TeV extended emission:

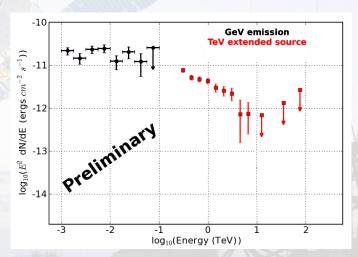
$$I = 23.26 \pm 0.01^{\circ}, \ b = -0.31 \pm 0.01^{\circ}, \ \sigma_{int} = 0.20 \pm 0.01^{\circ}$$


GeV emission:

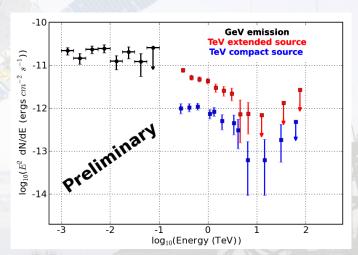
$$I = 23.18 \pm 0.07^{\circ}, \ b = -0.21 \pm 0.07^{\circ}, \ \sigma_{int} = 0.16 \pm 0.07^{\circ}$$

Intrinsic extensions: compatible

GOOD MATCHING BETWEEN
GEV AND TEV EMISSIONS


Fermi spectral analysis for $E\gamma > 1$ GeV

- Fitted with a Power Law:
- $\bullet \ \frac{\mathrm{d}N}{\mathrm{d}E} = I_0 \frac{(\alpha+1)E^{\alpha}}{E_{max}^{\alpha+1} E_{min}^{\alpha-1}}$
- $E_{min} = 1 \text{ GeV} E_{max} = 100 \text{ GeV}$
- $\alpha = 2.1 \pm 0.1$
- $I_0 = (1.2 \pm 0.1) \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1}$


NOT TYPICAL FOR PWN SPECTRA

HESS-Fermi spectral comparison

EXTENDED TEV EMISSION JOINS SMOOTHLY GEV EMISSION

HESS-Fermi spectral comparison

COMPACT TEV EMISSION NOT SEEN BY Fermi-LAT

Conclusion

TeV Extended emission:

- Good matching with GeV emission
- Compatible intrinsic sizes
- γ -ray spectra like interacting SNRs
- W41 possibly in interaction with a cloud
- ▶ Interacting SNR scenario ? But TeV morphology does not match ¹³CO density
- ▶ PWN scenario ? But GeV spectrum not typical and PSR younger than SNR?

TeV Compact source:

- Not seen by Fermi-LAT
- Coincident with Chandra compact nebula and pulsar candidate
- No pulsations found in GeV, X-ray and radio data
- ▶ Young PWN scenario ? But PSR younger than SNR?

Thanks for your attention