

Results from the binaries LS I +61° 303 & LS 5039 after 2.5 years of Fermi monitoring

Daniela Hadasch (IEEC-CSIC) on behalf of the Fermi-LAT collaboration

Microquasars or binary pulsars?

 γ_{LE} : synchrotron radiation or from star e⁻ and p: accelerated in the jet ion: from companion star γ_{LE}: from companion star
e⁻ and p: from relativistic pulsar wind
ion: from companion star

 $e + \gamma_{VHE}$

γγ

 $\pi_0 + \pi^{\pm}$

Samma-ray

Leptonic scenario: $e + \gamma_{LE}$

Hadronic scenario: p + ion

- Explain orbital phases on example of orbit of LS I +61° 303
- Inferior conjunction
 - Compact object in front of the star with respect to the observer
- Superior conjunction
 - Compact object behind the star with respect to the observer
- Periastron
 - Compact object and star closest to each other
- Apastron
 - Compact object and star furthest away from each other

LS 5039

- LS5039 detected at ~28 σ
- It sits in a bath of galactic diffuse emission
- → Faint compared to Galactic plane and also emission from nearby pulsar PSR 1826-1256

- New data set: 2 ¹⁄₂ years (Aug 2008 Jan 2011)
- → Additional data points at higher energies
- Separated in inferior and superior conjunction
 - exponential cutoff at superior conjunction
 - now enough statistics at inferior conjunction to confirm exponential cutoff there, too

- Periodicity detected at 3.91±0.05 days
- No spectral or flux change in 2 ½ years
 - Indications of **spectral variability** during one orbit still visible
 - Peak of emission around periastron, anti-correlated with VHE

LS I +61° 303

LS I +61° 303 – whole data set

• Periodicity found at **26.6 ± 0.5 days**

Daniela Hadasch

CSIC

LSI – flux change

Fermi symposium, May 2011

- 2 ¹/₂ years of data: Aug 08 Jan 11
 - Flux rose ~30% in March 2009
 - Modulation decreased after change

LS I – orbital cuts

- Cut in **inferior/ superior** conjunction: 2 ways
 - 1. Cut geometrically looking at sketch
 - Infc: 0.13 0.63
 - Supc: 0.63 0.13
 - \rightarrow Whole orbit

- 2. Cut in infc and supc regarding **compact object-star-observer angle**
 - Infc: 0.244 0.507
 - Supc: 0.981 0.244
 - ightarrow Slices of orbit

- New data allows for **distinctions of spectra around the orbit**
 - Exponential cutoff always favored
 - Inferior conjunction higher in flux, specially at low energies
 - Both cuts give **similar results**

- Cut in **periastron/ apastron** conjunction:
 - Regarding the distance of the two objects
 - Periastron: 0.025 0.525
 - Apastron: 0.525 0.025
 - \rightarrow Whole orbit

 The orbit is elliptic enough so that any cut in phase involves crossregions

- Data sets include **cross regions** with inferior and superior conjunction
 - Flux at periastron slightly higher

LS I – long term behavior

Folded **gamma-ray** light curves in half year bins:

→ Modulation gets lower

→Flux increased after 1. half year

- Folded **gamma-ray** light curves in half year bins:
- → Modulation gets lower
- →Flux increased after 1. half year
- Folded **X-ray** light curves in half year bins:
- \rightarrow **Modulation** highly variable
- →Flux increases

- LS 5039 continues to show clear orbital modulation, stable over 2 ¹/₂ years of monitoring
 - Spectral parameters stable
 - Significant emission at highest energies
 - Peak emission around periastron
- LS I +61° 303 showed a ~30% flux change in March 2009
 - Now enough statistics to make spectral studies of the orbital phases
 - Flux is higher at inferior conjunction
 - Cutoff stable for different phases
 - Orbital modulation is fading away with time
- Monitoring of binaries ongoing \rightarrow Poster by Tom Glanzman
- TeV observations of LS I +61° 303
 - Detections by MAGIC and VERITAS
 - Source appears fainter after 2009

THANK YOU!

BACK UP

- New data set: 2 ¹/₂ years (Aug 2008 Jan 2011)
 - Power law with **exponential cutoff** clearly favored over power law
 - Modulation is lower now

