HARD X-RAY/SOFT γ-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI

- Diffuse continuum emission spectrum and spatial morphology
- Comparison with GALPROP modeling

L. Bouchet, E. Jourdain, J.-P. Roques
Université de Toulouse, UPS-OMP, IRAP, Toulouse, France

A. W. Strong
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

T. A. Porter, I. V. Moskalenko
Hansen Experimental Physics Laboratory, Stanford University, USA

2011 Fermi Symposium, 9-12 May 2011, Rome, Italy
SPI SPECTROMETER (20 keV – 8 MeV) ONBOARD INTEGRAL OBSERVATORY

SPI is a spectrometer which is endowed with an imaging system sensitive both to point sources and extended/diffuse emission.

- Non-typical coded mask imaging system with a 30° FoV and 19 Ge detectors (ΔE/E=3 keV @1.3 MeV)
- Imaging relies on the dithering observation strategy

STUDY THE HARD X-RAY/SOFT γ-RAY “DIFFUSE” EMISSION

Process 6 years of data simultaneously through a system of equations

- Disentangle: background, point sources emission (light curves) and “diffuse” emission

INTEGRAL/SPI exposure surface (2003-2009)

~ 1.1×10^8 s livetime

~ 40000 exposures (pointings or viewing periods of ~2800 s).
HARD X-RAY/SOFT γ-RAY DIFFUSE EMISSION

- Point sources dominate the Milky Way (20-200 keV) emission, “diffuse” interstellar emission is weaker than previously reported (Lebrun et al., 2004)
- The annihilation radiation dominates above 300 keV and reaches a maximum at 511 keV

6 YEARS OF OBSERVATIONS:
- 270 sources in the 25-50 keV, 129 in the 50-100 keV, 68 above 100 keV

SPI RADIAN ($|l| < 30^\circ$, $|b|<15^\circ$) SPECTRUM

Sources
Diffuse
Positron Astronomy
511 e^+e^- keV line & positronium continuum
Morphology (Weidenspointner et al., 08, Bouchet et al., 10, Churazov et al., 10)
Bulge : $3^\circ + 12^\circ$ FWHM Gaussians
$F_{511} \sim 10^{-3}$ ph.cm$^{-2}$.s$^{-1}$
Disk : $\sim 1.7 \times 10^{-3}$ ph.cm$^{-2}$.s$^{-1}$
Positronium fraction $f \sim 100$
Spectroscopy (Churazov et al., 04 & 10, Jean et al., 06)

Galactic radioactivity
(Diehl et al., 04, Harris et al., 07, Wang et al., 07,09)
Inner Galaxy
60Fe, $F_{\text{mean}} \sim 4 \times 10^{-5}$ ph.cm$^{-2}$.s$^{-1}$
26Al, $F \sim 3.1 \times 10^{-4}$ ph.cm$^{-2}$.s$^{-1}$
60Fe/26Al ~ 18

CVs population ($E < 100$ keV)
Ψ “Unresolved” sources population which contains mainly CV’s and coronally active stars (Krivonos et al., 07)

Diffuse continuum : mainly interstellar particle interaction
Power law $\alpha \sim 1.5$
Diffuse X-rays/γ-rays from inner Galaxy

GALPROP code e.g. “cosmic-ray propagation code” (I. Moskalenko talk)

(e.g. Strong (2010), arXiv:1101.1381)

Total diffuse components:

Π^0

Bremsstrahlung

Inverse Compton on interstellar radiation field (optical, IR and CMB) from primary electrons, secondary e+e-
Diffuse hard X-ray/γ ray emission spatial distribution

2D Fit |l| < 180°, |b| < 90°

1. IC - GALPROP
 = interstellar particle interaction

2. NIR 4.9μ IR map
 (interstellar extinction effects removed)
 = stellar emission

3. Dashed: Positron annihilation (bulge)

Sum: 1 + 2 + 3

Sum (E < 50 keV):
1 + NIR 4.9μ map + 3

GALPROP IC map:
Primary electron x 2

⇒ MORE CONSISTENT with SPI
Increasing the hard X-ray/soft γ-ray diffuse continuum emission

GALPROP Inverse Compton models (dashed lines)
- Primary electron spectrum based on Fermi
- Primary electron spectrum increased by a factor 2

Or
- Increased halo height from 4 kpc to 10 kpc
- Increased ISRF in the Galactic bulge (x 10)
- Increased halo height from 4 kpc to 10 kpc and ISRF in the bulge (x 10)

$|l| < 30^\circ$ and $|b| < 15^\circ$
+ COMPTEL
+ SPI

Low energy “unresolved” sources population
Annihilation radiation spectrum
Blue shaded area : uncertainties on spectral modelling
Primary electron spectrum:
- increased by a factor 2
- cutoff below 5 GeV
- cutoff below 1 GeV

Electron low-energy spectrum and SPI data:
$|l| < 30^\circ$ and $|b| < 15^\circ$

- COMPTEL
- SPI

⇒ Shows that SPI gamma-rays are sensitive to electrons below 1 GeV probes range which other methods cannot
SUMMARY

20 keV- 2.5 MeV DIFFUSE EMISSION, SPECTRUM AND SPATIAL MORPHOLOGY

► SPI data confirm COMPTEL measurements around the MeV

GALPROP DIFFUSE EMISSION MODELING

► SPI : PROBE of cosmic-rays electrons and positrons
► SPI gamma-rays are sensitive to electrons below 1 GeV

INTEGRAL/SPI CONSTRAINTS

- Electron spectrum
- Halo height
- Interstellar radiation field in bulge

Upper limits on “Fermi bubbles”

PERSPECTIVES

► INTEGRAL mission extension to 2014 would give 12 years of data
Future improvements in data reduction techniques and models

► SPI + FERMI constraints added to those from radio to γ-rays
Use all types of data in a self-consistent way to test models of cosmic propagation
The map of the Galaxy in the near infrared spectral band was obtained using data of COBE/DIRBE observations (zodi-subtracted mission average map provided by the LAMBDA archive of the Goddard Space Flight Center, http://lambda.gsfc.nasa.gov). To reduce the influence of the interstellar reddening we considered DIRBE spectral band 4.9µ. We applied first-order corrections to the NIR map of the Galaxy obtained by COBE/DIRBE. We assumed that the intrinsic NIR color temperature (i.e., the ratio of intrinsic surface brightnesses \(I_{1.2\mu m} \) and \(I_{4.9\mu m} \)) of the Galactic disk and the Galactic bulge/bar is uniform and its true value can be derived at high Galactic latitudes where the interstellar reddening is negligible. Then the foreground extinction map may be expressed as:

\[
A_{4.9\mu m} = \frac{-2.5}{A_{1.2\mu m}/A_{4.9\mu m} - 1} \left[\ln \left(\frac{I_{1.2\mu m}}{I_{4.9\mu m}} \right) - \ln \left(\frac{I_{1.2\mu m}}{I_{4.9\mu m}} \right) \right].
\]

Here the \(A \) values are the reddening coefficients at different wavelengths. We have used the interstellar reddening values from works of Lutz et al. (1996) and Indebetouw et al. (2005). The employed correction of course removed only main effects of interstellar extinction on the COBE/DIRBE map, therefore we do not expect that the obtained COBE/DIRBE map and profiles have accuracy higher than \(~10\%\).
Primary electron spectrum:
- increased by a factor 2
- cutoff below 5 GeV
- cutoff below 1 GeV

Electron low-energy spectrum and SPI data

$|l| < 30^\circ$ and $|b| < 15^\circ$

+ COMPTEL
+ SPI

Orange: Fitted Inverse Compton component intensity
Cyan: Excess to Inverse Compton

$E^2 \times$ Intensity (cm$^{-2}$ s$^{-1}$ MeV$^{-1}$)

⇒ Shows that SPI gamma-rays are sensitive to electrons below 1 GeV:
probes range which other methods cannot
Diffuse X-rays/\(\gamma\)-rays from inner Galaxy

GALPROP code e.g. “cosmic-ray propagation code”

\[
\text{Total diffuse} = \Pi_0 + \text{Bremsstrahlung} + \text{Inverse Compton on interstellar radiation field (optical, IR and CMB)} \text{ from primary electrons, secondary electrons + positrons.}
\]

Magenta : Fermi sources – Black : Isotropic/Extragalactic

\(J(E) = E^{-1.6} \) for Fermi (2009) [PRELIMINARY]

\(J(E) = E^{-2.3} \) for pre-Fermi data

\(\Delta E/E = \{5\%, 10\%\} \)
GRXE hard X-ray measurements with INTEGRAL

INTEGRAL/IBIS

A population of sources composed of CVs may explain a large fraction of the diffuse emission at $E < 100$ keV (Krivonos et al., 2007, Revnivtsev et al., 2007)

GRXE MAIN CHARACTERISTICS

Spatial distribution \sim NIR/DIRBE 3.5 - 4.9 μ

Spectral cutoff at 30-50 keV

$L \sim 4-6 \times 10^{37}$ erg s$^{-1}$

Revnivtsev et al., 2007

Tueller et al., 2010
Diffuse X-rays/γ-rays from inner Galaxy

Inverse Compton from primary electrons, secondary electrons + positrons

Blue crosses=SPI, Green crosses=COMPTEL, vertical bars=FERMI, Dashed green area : SPI power law continuum measured by INTEGRAL/SPI (Bouchet et al., 2008, Porter et al., 2008, Bouchet et al., 2010, in preparation)
Diffuse X-rays/γ-rays from inner Galaxy

Inverse Compton from primary electrons, secondary electrons + positrons

Abdo et al (2009) PRL 103, 251101

Fermi does *not* confirm EGRET GeV excess

Abdo et al (2009) PRL 103, 251101

Blue crosses:=SPI, Green crosses=COMPTEL, vertical bars=FERMI

Continuum measured by INTEGRAL/SPI (Bouchet et al., 2008, Porter et al., 2008, Bouchet et al., 2011, in preparation)

New electron spectrum measurement
GALPROP code
Cosmic-ray luminosity and energy budget of the Milky-way

Use all types of data in a self-consistent way to test models of cosmic propagation

Global CR-induced luminosity spectra of the MW.
Line styles: ISRF, including optical and infrared scaled by factor 10^{-4} (magenta solid) and components. Cosmic rays (dotted lines), protons (red), helium (blue), primary electrons (green), secondary electrons (cyan), secondary positrons (magenta); CR-induced diffuse emissions (solid lines), IC (green), bremsstrahlung (cyan), 0-decay (red), synchrotron (black, left side of figure), total (black, right side of figure).