

Recovering LAT transients' signal below 100 MeV "LAT Low-Energy" performance and validation

V.Pelassa¹, L.Baldini, J.Bregeon, P.Bruel, J.M.Burgess, E.Charles, S.Guiriec, N.Omodei, F.Piron, R.Preece ¹NSSTC/CSPAR Univ. of Alabama in Huntsville

Veronique.Pelassa@uah.edu

on behalf of the *Fermi* LAT & GBM collaborations

Roma, May 10th 2011

MOTIVATION

(GRB 080916C count spectrum: A.Abdo et al, Science 323:1688 (2009))

Analysis technique

Analysis technique

Analysis technique

PERFORMANCE AND VALIDATION STUDIES

Instrument's Response Functions

- ► Acceptance
- Energy redistribution
- Point Spread Function (PSF)

Systematic errors in spectral analyses

- successive cuts efficiencies: data vs MC
- construction of the response matrix (self consistency)
- ▶ minimization method: not new ⇒ already tested

Space l elescope

CUT DEFINITION & ACCEPTANCE

Define a minimal event selection: "LAT Low Energy" (LLE)

- on-board photon filter
- at least one track found
- +conditions on on-board trigger

ENERGY ESTIMATOR

Usual estimator:

LLE estimator:

ENERGY: BIASES AND RESOLUTION

• low biases, reasonable resolution ($\sim 2 \times$ usual analysis)

very-inclined high-energy events can not reach the calorimeter

POINT SPREAD FUNCTION

Direction measurement

- allowed by "one track" criterion
- implies a PSF definition
- allows to define a spatial selection (Region of Interest, ROI)

Gamma-ray Space Telescope

POINT SPREAD FUNCTION

Vela Phase

LĽE

PSF VALIDATION RESULTS

- $(0 < \theta < 40^{\circ})$ Gamma-ray
 - observation and MC in good agreement
 - ► PSF \vee over E, \vee over inclination SCODE
 - FRONT vs BACK: no significant difference found

Systematic errors in spectral analyses

Two main sources of systematic errors.

1. (Our knowledge of the) instrument's reponse

- i.e. how well do our MC reproduce the successive cuts's actual efficiencies:
 - on-board trigger
 - on-board photon filter
 - LLE cut: "one track" criterion
 - PSF-based spatial selection (ROI)

Method:

- two photon samples: MC photons and Vela bkg-subtracted pulsed emission
- ▶ compute cut's efficiency (or equivalent) for both samples → ratio
- statistical uncertainty on ratio yields the systematic error

Lamma-ray

2. The reconstruction method

- construction of the response matrix (check self consistency)
- minimization method: already tested

TRIGGER EFFICIENCY

Tracker trigger

- aka "3-in-a-row": primary trigger for most LLE events
- On-board trigger: efficiency not easily measurable (no "reference")
- ⇒ Fraction of LLE events "on the border" (have exactly 3 hits in a row)
- ▶ MC and data agree within 15%
- ▶ Geometry effect: 2%

all events

THE "ONE-TRACK" CRITERION

- Primary cut in the LLE selection
- Same method as for the TKR trigger: fraction of LLE events with minimal nb. hits for defining a Track
- ▶ MC and data agree within 15%

On-board photon filter

On-board "diagnostic" filter (DGN)

- unbiased sample of all LAT triggers
- allows measurement of an on-board cut efficiency
- Iow statistics: needs a Rol cut to identify Vela pulses

On-board photon filter efficiency

PSF-based RoI

- ► Energy-dependent cut: 68% or 80% "explored PSF"
- ▶ 68% PSF: <30% <100 MeV, <10% >200 MeV
- 80% PSF: lower errors
- conservative values (statistics-limited)

(all events in $0 < \theta < 40^{\circ}$)

RESPONSE MATRIX

GRB 080916C LLE response matrix (heta \simeq 50°)

GRB & TRANSIENTS' STUDIES

SUMMARY

The alternative LLE data selection shows good performance:

- high acceptance at all energies and angles
- ▶ low energy biases and resolution (~2× standard analysis)
- ▶ well-defined point spread function (~ standard analysis at 100MeV)
- good agreement between our MC and real instrument response

Ongoing/upcoming: more analyses of GBM-LAT transients

- more detections
- spectral analyses down to 30MeV in the LAT
- quantitative light curve studies

Take a look to posters GRB S2.N23 (35) and SolarSystem S2.N2 (155)

LLE data public release:

- target date: Fall 2011 Winter 2012
- triggered data around GRB and SF with response matrix

THANK YOU !