

Results from the PAMELA experiment

| N F N

ELENA VANNUCCINI

ON BEHALF OF PAMELA COLLABORATION

PAMELA

Payload for Matter/antimatter Exploration and Light-

nuclei Astrophysics

Direct detection of CRs in space
Main focus on antiparticles (antiprotons and positrons)

• PAMELA on board of Russian satellite **Resurs DK1**

- Orbital parameters:
 - inclination ~70° (\Rightarrow low energy)
 - altitude ~ 360-600 km (elliptical)
 - active life >3 years (\Rightarrow high statistics)

Launch from Baykonur

→ Launched on 15th June 2006
 → PAMELA in continuous data-taking mode since then!

PAMELA detectors

Main requirements:

- high-sensitivity antiparticle identification

- precise momentum measure

Absolute fluxes of primary GCRs

H & He absolute fluxes

- First high-statistics and high-precision measurement over three decades in energy
- Dominated by systematics (~4% below 300 GV)
- Low energy
 → minimu solar activity
 (\$\$\phi\$ = 450÷550 GV\$)
- High-energy

 → a complex structure of the spectra emerges...

P & He absolute fluxes @ high energy

Deviations from single power law (SPL):

- Spectra gradually soften in the range 30÷230GV
- Abrupt spectral hardening @~235GV

Eg: statistical analysis for protons

- SPL hp in the range 30÷230 GV rejected @ >95% CL
- SPL hp above 80 GV rejected @ >95% CL

H/He ratio vs R

Instrumental p.o.v.

• Systematic uncertainties partly cancel out

Theoretical p.o.v.

- Solar modulation negligible

 → information about IS spectra down to GV region
- Propagation effects

 (diffusion and fragmentation) negligible above ~100GV
 → information about source spectra

(Putze et al. 2010)

P/He ratio vs R

- First clear evidence of different H and He slopes above ~10GV
- Ratio described by a single power law (in spite of the evident structures in the individual spectra)

Electron energy measurement

Two independent ways to determine electron energy:

1. Spectrometer

- Most precise
- Non-negligible energy losses (bremsstrahlung) above the spectrometer → unfolding

2. Calorimeter

- Gaussian resolution
- No energy-loss correction required
- Strong containment requirements
 - \rightarrow smaller statistical sample

Electron identification:

- Negative curvature in the spectrometer
- EM-like interaction pattern in the calorimeter

Electron absolute flux

- Largest energy range covered in any experiment hitherto with no atmospheric overburden
- Low energy
- minimum solar activity ($\phi = 450 \div 550 \text{ GV}$)
- •High energy
 - No significant disagreement with recent ATIC and Fermi data
 - Softer spectrum consistent with both systematics and growing positron component

Antiparticles

Positrons

Positron/electron identification:

- Positive/negative curvature in the spectrometer
 → e⁻/e⁺ separation
- EM-like interaction pattern in the calorimeter
 - \rightarrow e⁺/p (and e⁻/p-bar) separation

Main issue:

- Interacting proton background:
 - fluctuations in hadronic shower development: $\pi_0 \rightarrow \gamma \gamma$ mimic pure e.m. showers
 - p/e⁺: ~10³ @1GV ~10⁴ @100GV

\rightarrow Robust e⁺ identification

Shower topology + energy-rigidity match

\rightarrow Residual background evaluation

- Done with flight data
- No dependency on simulation

Positron fraction

Low energy
 → charge-dependent solar modulation

High energy

 → (quite robust) evidence
 of positron excess above
 10GeV

(see eg. Serpico 2008)

Antiprotons

Antiproton/proton identification:

- Negative/positive curvature in the spectrometer
 → p-bar/p separation
- Rejection of EM-like interaction patterns in the calorimeter

 \rightarrow p-bar/e⁻ (and p/e⁺) separation

Main issue:

• Proton "spillover" background:

wrong assignment of charge-sign @ high energy due to finite spectrometer resolution

→ Strong tracking requirements

- Spatial resolution < $4\mu m$
- R < MDR/6
- \rightarrow Residual background subtraction
 - Evaluated with simulation (tuned with in-flight data)
 - ~30% above 100GeV

Antiproton flux

- Largest energy range covered hiterto
- Overall agreement with pure secondary calculation
- Experimental uncertainty (stat⊕sys) smaller than spread in theoretical curves
 → constraints on propagation parameters

A challenging puzzle for CR physicists

Antiprotons → Consistent with pure secondary production

Positrons → Evidence for an excess

Positron-excess interpretations

Dark matter

- boost factor required
- lepton vs hadron yield must be consistent with pbar observation

Astrophysical processes

- known processes
- large uncertainties on environmental parameters

Positrons VS antiprotons

- Large uncertainties on propagation parameters allows to accommodate an additional component
- A p-bar rise above 200GeV is not excluded

Positrons

vs electrons

• Fit of electron flux

Two scenarios:

- 1. **standard** (primary+secondary components)
- 2. **additional primary** e⁻ (and e⁺) component
- Electron data are not inconsistent with standard scenario, but...

 ...an additional component better reproduce spositron data

Solar and terrestrial physics

Trapped antiprotons

First measurement of pbar trapped in the inner belt.

PAMELA has been in orbit and studying cosmic rays for ~4.5 years. >10⁹ triggers registered and >20 TB of data have been down-linked.

- **H and He absolute fluxes** → Measured up to ~1.2TV. Most precise measurement so far. Complex spectral structures observed (spectral hardening at ~200GV!) → Challenge the current paradigm of CR acceleration in SNRs!
- Electron absolute flux → Measured up to ~600GeV. No evident deviations from standard scenario, but not inconsistent with an additional electron component.
- **High energy positron fraction (>10 GeV)** → Increases significantly (and unexpectedly!) with energy. → Primary source?
- Antiproton energy spectrum \rightarrow Measured up to ~200 GeV. No significant deviations from secondary production expectations.
- **Solar physics**: measurement of solar-flare particle spectra
- **Physics of the magnetosphere**: first measurement of trapped antiproton flux

Other studies and forthcoming results:

- Upgrade of positron analysis (increased statistics, higher energy)
- Primary and secondary-nuclei abundance (up to Oxygen)
- H and He isotope abundance
- Solar modulation (long-term flux variation and chargedependent effects)
- Upper limit to anti-he abundance

Thanks!!