Fermi
Gamma-ray Space Telescope

Dark Matter Observations and Fermi

L. Latronico
INFN-Torino and INFN-Pisa
On behalf of the Fermi Mission Team

3rd Fermi Symposium
Roma, May 9-12 2011
I – Basics of Indirect DM Searches

Spectra
Fluxes
Targets
The so-called WIMP *miracle*
- most natural extension of particle physics Standard Model provide a natural DM candidate with correct relic density from cosmology

Thermal freeze-out gives benchmark annihilation cross-section $\langle \sigma v \rangle \sim 3 \times 10^{-26}$ cm3s$^{-1}$
Choice of the particle physics model fixes final states and spectrum, but in general

- Non simple power law spectra
- b-$b\bar{b}$ spectrum good proxy for hadronic channels (quarks and gauge bosons)
- Leptonic channels in conjunction with CRE excesses
- Inclusive photon spectra

Smoking-gun signature, but $O(10^{-3} / 10^{-4})$ suppressed
- Measured flux (from the instrument)
 - Instrument related systematics
- Expected flux typically factorized as

\[
\frac{d\Phi_\gamma}{dE_\gamma}(E_\gamma, \phi, \theta) = \frac{1}{4\pi} \frac{\langle \sigma_{\text{ann}}vn \rangle}{2m_{\text{WIMP}}^2} \sum_f \frac{dN_{\gamma f}}{dE_\gamma} B_f \times \int_{\Delta \Omega(\phi, \theta)} d\Omega' \int_{\text{los}} \rho^2(r(l, \phi')) dl(r, \phi')
\]

- Particle Physics factor (from theorists)
 - Model-dependent
- DM density (from measurements and simulations)
 - Large uncertainties
 - Folds with instrument resolution (source extension)
Basics – DM targets in the sky

Satellites
Low background and good source id, but low statistics, in some cases astrophysical background

Galactic Center
Good Statistics but source confusion/diffuse background

Milky Way Halo
Large statistics but diffuse background

Spectral Lines
No astrophysical uncertainties, good source id, but low sensitivity because of expected small BR

Extra-galactic
Large statistics, but astrophysics, galactic diffuse background

Galaxy Clusters
Low background, but low statistics
II – Observation techniques and example results

Cosmic Rays
Neutrinos
Gamma-rays from the ground
Gamma-rays from space
Spectrometers (PAMELA, AMS, balloons)
- Measure particle ID, charge
Calorimeters (ATIC, Fermi, HESS, balloons)
- Separate EM from hadronic signals via shower topology
Statistics driven by \simsize (acceptance), integrated livetime
Inclusive spectrum
- Hard with no strong features (Fermi)
- $\sim>$ TeV cutoff (HESS)

CRE Anisotropies (Fermi)
- \simExclude single local astrophysical source (dipole)
- Leave room for DM (expected more symmetrical halo)
- Same technique used to constrain CREs from the Sun and derive DM limits (see poster DMNP.S1.N8)
- Positron fraction (Pamela, Fermi)
 - Rising
 - At odd with standard production of secondaries (and anti-proton spectrum from Pamela)
- Electron spectrum (Pamela)
 - Consistent with Fermi
- Leptophilic DM ?
 - Test with gamma-rays!
Workhorse IC muon neutrino tracking
 - ~degree resolution

Search for large scale anisotropy form DM in the Galactic Halo
 - ON-region (signal) centered around GC
 - OFF-region (background) anti-centered on the GC
 - Galactic center outside FOV (looks at events below horizon from Northern sky)

arxiv 1101.3349, ~5k events

III Fermi Symposium, Rome
Sensitive to high energy
- Limits to WIMP annihilation cross-section derived similarly to gamma-ray analysis
- \(\sim O(10^4) \) from thermal limit, expected improvements from
 - Increased acceptance (IceCube40)
 - other targets (dwarfs, GC with IceCube core)

III Fermi Symposium, Rome, May 2011
- \(\sim 10^4 \text{ m}^2 \) effective area
 - atmosphere, wide mirrors
- \(\sim 0.1^\circ \) angular resolution
- \(\sim 100 \text{ GeV} \) current WIMP threshold
- Field of view (few degrees) and duty cycle current challenge
 - Competition with astrophysical targets
 - Typical observing time for DM targets \(\sim 30 \text{ hrs} \)
γ-rays from ground – some results

- Limits on single dwarfs
 - \(\sim O(10^4) \) above thermal limit
 - Significant improvement could come from much improved sensitivity of CTA

- Extended regions (Galactic Halo)
 - Work in progress at HESS

MAGIC, arxiv 1103.0477 and poster DMNP.S1.N6

Galactic center analyses
- help resolving sources in the region
- VERITAS detects GC (confirms HESS/MAGIC spectra) with large zenith angle observations
- DM constraints requires careful definition of ON and OFF regions
- HESS constraints $\sim O(10) \times <\sigma v>_{\text{thermal}}$ but insensitive to isothermal DM profiles

Beilke, this Symposium

H.E.S.S., arXiv:1103.3266
Key features for DM searches

- Energy range and resolution
 - probe \simGeV – 1 TeV WIMPs with $7 < \sigma_E < 15\%$
- $\sim 0.1^\circ$ angular resolution
 - From point source to diffuse emission
- Full-sky coverage
 - All targets at same time
 - Synergy with astrophysics (e.g. diffuse gamma-rays)
 - No competition for observing time with astrophysical program
- Large photon statistics
Search for gamma-ray emission from dwarf spheroidals
- No astrophysical emission expected

Conventional Fermi-LAT point source analysis
- uses LAT experience in handling instrument response and background

Convert flux Upper Limits to model-dependent UL on DM annihilation cross section
- Uncertainties on J factor

Updated results from stacked dwarfs reach $\sim <\sigma v>_{\text{thermal}}$
- See talk by Llena-Garde
Search for gamma-ray lines in inclusive, all-sky spectrum
- No astrophysical background

Suppressed signal
- limits still some $\sim O(1)$ X thermal WIMPs
- Some scenarios constrained (non thermal WIMPs)

Require good and well-known energy resolution
- See talk by Bloom

update to PRL 104, 091302, 2010

III Fermi Symposium, Roma, May 2011
Search for anisotropies of diffuse gammas through Angular Power Spectrum

Benefits from LAT full sky coverage, uniform exposure, angular resolution

Potential to reveal unmodeled source classes, including Dark Matter
 - See talk by Siegal-Gaskins
 - See poster by Fornasa (DMNP.S1.N5)
III - Updates from Fermi and caveats

Point sources and DM distribution
Extended regions and diffuse emission
Isotropic and astrophysical contributions
Fermi updates on sources

- No DM satellites found in 1 year of data when requiring
 - Spectrum inconsistent with conventional power law
 - Source extension (almost all pulsars pass simple spectral tests)

- Galaxy Clusters
 - Stacking method improved limits
 - Guaranteed gamma-ray from CR interactions
 - See talk by Zimmer

III Fermi Symposium,
- Important for converting flux UL into cross-section limits
- J factor
 - Important for dSph
- Diffusion
 - Impact IC component for leptonic final states
- Role of substructures
 - Expected from theoretical arguments
 - can be used to boost signal and improve limits
Exploits both spectral and spatial information
- Data binned in E and angle

Large residuals in the fit favor a DM component
- scan model parameters of diffuse emission that affect more significantly DM limits
- Compute limits assuming all diffuse emission is DM

Simultaneously fit CR and gamma-ray data scanning full phase space of CR models

III Fermi Symposium, Roma, May 2011
Residual maps from a selection of GALPROP models show considerable large scale structures
- Fermi lobes, Loop I, bubbles ...
see talk by JM Casandjian

Su, Slayter and Finkbeiner, 2010
Fermi updates – Isotropic gamma-ray Background

- All sky spectrum
 - Clean sample to extend beyond 100 GeV and probable higher energy WIMPs
 - Major contribution from galactic diffuse emission

- Caveats for constraining DM
 - Modeling astrophysical contribution
 - Effects from cosmological DM distribution and photon propagation effects (EBL)
 - See 2010, JCAP, 04, 014
Wealth of results from Indirect Dark Matter searches

- Cosmic Rays
 - Fermi and Pamela provide coherent observational picture

- Neutrinos
 - Initial results, comprehensive observational program

- Gamma-rays
 - Fermi and IACT complementary in energy range

Important synergies

- Gamma-ray results disfavor lepto-philic DM from CRE excesses
- Hints from direct or accelerator searches reduce models phase space for cross-checks
Gamma-ray results

- Point sources cleanest target
 - Fermi limits from dwarfs scratching WIMP benchmark thermal cross section at \(\sim 10 \) GeV
- All sky (EGB, line, anisotropies) accessible to Fermi only
 - Focus on instrument performance
- Extended regions (halo, Inner Galaxy) promising but hard
 - Diffuse emission is the maximal uncertainty, need input from Fermi and other missions to improve modeling