Tentative observation of a gamma-ray line at the Fermi Large Area Telescope

 T. Bringmann, X. Huang, A. Ibarra, S. Vogl & CW, JCAP 1207 (2012) 054 CW, JCAP 1208 (2012) 007
 L. Bergström, G. Bertone, J. Conrad, C. Farnier & CW, to appear in JCAP T. Bringmann & CW, arXiv:1208.5481
 D. Finkbeiner, M. Su & CW, arXiv:1209.4562

Christoph Weniger GRAPPA Institute, Amsterdam

2 Nov 2012 Fermi Symposium 2012, Monterey

Various DM annihilation gamma-ray spectra

• Generically suppressed by $O(\alpha)$

"Smoking guns" (high-risk-high-gain)^2

 $O(\alpha^2)$

generically suppressed by

Gamma-ray line claims since March 2012

1) Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation Bringmann, Huang, Ibarra, Vogl & CW, JCAP 1207 (2012) 054

2) A tentative gamma-ray line from dark matter annihilation at the Fermi LAT CW, JCAP 1208 (2012) 007

"In regions close to the Galactic center, we find a 4.6 sigma indication for a gamma-ray line at 130 GeV."

3) Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic center Tempel, Hektor and Raidal, JCAP 1209 (2012) 032

4) Strong evidence for gamma-ray lines in the inner galaxy Su & Finkbeiner, arxiv:1206.1616

> "Even better fits are obtained for off-center Einasto and powerlaw profiles, which are preferred over the null (no line) hypothesis by 6.5 sigma (...)."

How to search for lines

ROI selection

ROI in previous studies by the LAT team

Galactic center + high latitudes Compromise region for different profiles and DM annihilation and decay 30 E -01 $|b| > 10^{\circ}$ plus $|\ell|, |b| < 10^{\circ}$

[from 1205.2739]

Our poor man's method to select ROIs:

BG morphology:

- Background: 1-20 GeV LAT countmap
- Signal: Einasto, NFW, cored isothermal & contracted DM profiles

Fluxes measured by the LAT

CLEAN vs SOURCE at 130 GeV:

Aeff_SOURCE/Aeff_CLEAN-1.12

(S/N)_SOURCE/(S/N)_CLEAN-0.9-1.1

S/N are similar for SOURCE and CLEAN class, in increasingly better for small ROIs → search in both, correct for that by two independent trials

But: beware of possible spectral features in CR BG contamination

[see Eric Charles' talk]

Spectral Analysis

"Sliding energy windows": For a certain gamma-ray line energy, the spectral analysis is performed within a small energy window around that line energy

What it does:

- Secondary photons in DM signal can be neglected
- Astrophysical backgrounds can be approximated by power-laws

 \rightarrow Simple fit with PL background + Line signal

Key question: what window size?

Results

Dependence on window size

Powerlaw + line fit (1D PDF) in energy range 80.5 – 210.1 GeV

> Local significance: 4.6σ Global significance: 3.2σ

 $E_{\gamma} = 129.8 \pm 2.4^{+7}_{-13} \text{GeV}$

(CLEAN events: 4.4 local)

The 130 GeV feature

Annihilation cross-section & DM profile

- Annihilation cross-sections are consistent for Einasto & NFW profiles
- Branching ratio for thermal relic would be very large:

 $BR(\chi\chi\to\gamma\gamma)\sim 5\%\gg 10^{-4}$

Trials correction

- To calculate trial factors for scan from 20 to 300 GeV, we performed
 - a Monte Carlo analysis (25000 samples) of spectra without signal
 - a subsampling analysis of anti-galactic-center data (~21000 random test regions from |I|>90deg data) and searched for lines.

- Trials from
 - correlated ten target regions times two event classes: ~10 trials (3.0 sigma for 20 trials)
 - scan from 20 to 300 GeV: 6.81 "independent search regions"

 \rightarrow globally 3.2 sigma

Signature is at the GC only (1)

Signature is at the GC only (2)

• TS value along the Galactic disk in 6x6 deg² regions, excluding regions close to the GC.

- There are places away from the GC with local >3 sigma indication for a line
- This is exactly what is expected for a large number of trials (dashed line)

Compatible with Einasto/NFW profiles

ROI with variable size:

TS maps

PRELIMINARY

130 GeV line + PL BG in energy range [65, 250] GeV

[see also Eric Charles' talk]

Indications for a second line?

 $\chi\chi \to \gamma\gamma, \ \gamma Z^0, \ \gamma H^0$

- 1.4 sigma hint for second line, compatible with gamma Z
- Upper limits in other cases (fits performed in SOURCE class Reg4)

See also [1205.4723, 1206.1616]

Time evolution of signal

Time evolution of TS value

- All curves are compatible with non-variability
- Dots show new events >80 GeV, circles new events close to 130 GeV
- Signal is slightly falling since ~April

[Limb line: Elliott Bloom's talk]

Situation now (unreprocessed PASS7)

	 Data up to 19 Oct 2012 (+16% events) stronger cuts in gtmktime (-8% events) → 6% larger #events 		2D PDF (energy + incidence angle information)	Larger E-wir (higher stat power) PRE	ndow istical LIMINARY
TS va	lues:				
Reg3 CLEAN Reg4 CLEAN Reg3 SOURCE Reg4 SOURCE	18.1 19.0 21.1 21.4	 ▶ 15.4 17.6 19.7 22.1 	12.1 14.0 17.1 19.5	Now	15.8 17.9 22.1 24.5
80 [1	.5-210.2 GeV .204.2729]	80.5-210.2 Ge	V 80.5-210	.2 GeV	65 – 260 GeV

- Local significance drops sligtly when adopting 2D PDF. [See next talk by Andrea Albert]

- Overall little change since April 2012:

- ~4.0 sigma (3.7 to 4.2) sigma in Reg4 CLEAN

- ~4.5 sigma (4.4 to 4.9) sigma in Reg4 SOURCE

 \rightarrow We need significantly more data

HESS-II to the rescue?

HESS-II (hybrid)

- Assuming 50 hours of GC observation
- enough to rule out signature or confirm it at 5 sigma (if systematics are under control)
- Observations start in March 2013

[parameters from J. Lefaucheur+ (Gamma 2012, Heidelberg)]

Summary

The LAT data contains an excellent candidate for a gamma-ray line from DM annihilation. It's cause is unclear.

- Rare statistical fluctuation: maybe. But in light of the importance of such a result, there is no way around following this up carefully.
- Instrumental cause: cannot be excluded right now (beware the Earth limb!). But: why distribution compatible with NFW/Einasto profiles? Why just at the Galactic center?
- Dark Matter Annihilation? Right now nothing more than an optimistic interpretation. But the signature <u>is</u> there, has all the properties one would like to see from a DM signal, and it needs to be understood.
- ...we need more data (→ a matter of time, PASS8, HESS-II, Limb Observations, ToO)

Backup Slides

Broken Power Laws?

Toy model for sharp gamma-ray emission

Scenario:

1) Inject hard electron spectrum (spectral index 1 to 1.5) and cutoff at ~10 TeV into GC.

- 2) Synchrotron losses on a dominanting uniform magnetic field.
- 3) Electrons pile up \rightarrow Idealized, this gives an electron line.

4) Inverse Compton Scattering on the ISRF

Cross-sections

Cross-sections

The incidence angle vs zenith angle plane

Expected vs observed limits A tribute to the Higgs Boson

(Limits derived from mock data over the null hypothesis)

Signature is at the GC only (3)

Target region: circle with 10deg radius, moved along the galactic disc / along l=0.

Non-zero annihilation crosssections at 3sigma are only prefered when target region intersects with galactic center.

Approximating backgrounds with a power-law

Expected backgrounds:

Line significance at different incidence angles

