THE FIRST FERMI-LAT CATALOG OF SUPERNOVA REMNANTS

T. J. Brandt NASA / Goddard Greenbelt, MD Fermi Symposium 30 Oct 2012 Monterey, CA

Fermi-Detected γ-ray Emission

Fermi-Detected SNRs

- 13 identified SNRs, including
- 9 interacting
- 4 young SNRs

Fermi-Detected SNRs

- 13 identified SNRs, including
- 9 interacting
- 4 young SNRs

Fermi-Detected SNRs

13 identified SNRs, including

- 9 interacting
- 4 young SNRs

+ 43 2FGL candidates, excluding identified PSRs, PWN, AGN

SNR Catalog:

To better understand SNRs in a statistically significant manner within a MW context.

- > Characterize GeV emission in regions containing SNRs
- Examine multi-wavelength (MW) correlation, including spectrum
 + morphology for radio, X-ray, and TeV and CO, maser, IR, ...
- > Determine statistically significant SNR classification(s) and perform spectral modeling

With particular efforts from:

F. Acero, J. W. Hewitt (NASA/Goddard) F. de Palma, F. Giordano (INFN/Bari)

CTB 37a: an Example

Radio contours

XMM contours

H.E.S.S. detection

(MOS1: 0.2-10ke)

Galactic longitude (°)

Detection: Fermi-LAT data shows non-variable emission from a region coincident with the MW SNR.

Spectral study: MW model fitting shows emission is best-fit with π^0 -decay + bremsstrahlung.

Energetics: ~5% of the energy goes into (hadronic) CRs.

Particle populations' and environment constraints:

Particle power laws: flux, index, (lepton) cutoff E B-field: first lower limit, constraining UL

Data Set:

- > 3 years of P7SOURCE_V6 LAT data
- > E: 1-100 GeV
- > Region Of Interest: 10° around each SNR

Charaterize GeV Emission: Analysis Procedure

- > 3 years of P7SOURCE_V6 LAT data
- > E: 1-100 GeV

> Region Of Interest: 10° around each SNR

Charaterize GeV Emission: Analysis Procedure

SNR Catalog:

> Fermi-LAT has the ability to spatially resolve a large number of the 278 known SNRs.

T. J. Brandt

SNR Catalog:

Fermi-LAT has the ability to spatially resolve a large number of the 278 known SNRs.
 Spatial extension measured for 15 SNRs, including 6 new candidates, permitting clear identification.

T. J. Brandt

Radio-GeV Correlation?

Radio synchrotron emission indicates the presence of relativistic leptons. LAT-detected SNRs tend to be radio-bright:

Radio-GeV Index

If radio and GeV emission arise from the same particle population(s), under simple assumptions, the GeV and radio indices should be correlated:

GeV-TeV Index

> Indication of break at TeV energies

> Caveat: TeV sources are not uniformly surveyed.

GeV-TeV Index

> Indication of break between GeV and TeV

> Caveat: TeV sources are not uniformly surveyed.

Environment?

Interacting SNRs tend to be more luminous than young SNRs.

... or Evolution?

Young SNRs tend to be harder than older, interacting SNRs.

Due to

- > decreasing shock speed allowing greater particle escape?
- > decreasing maximum acceleration energy as SNRs age?

Conclusions

> Our systematic study of a statistically significant population of galactic SNRs

- > has identified 6 new extended and >25 new point-like SNR candidates
- > in at least 2 GeV-luminous classes: young and interacting SNRs.
- > Combining our GeV with MW observations
 - » suggest that some SNRs' emitting particle populations are linked
 - > demonstrates that our simple assumptions are no longer sufficient and
 - > allows us to test more complex acceleration and emission models for a variety of environments, ages, and progenitors.
- > Improved observations and modeling will
 - » give us greater insight into SNRs, their acceleration mechanisms and their accelerated particles
 - > yield further evidence for CR origin and acceleration
- > Accurately estimating SNRs' aggregate particle acceleration ability will also allow us to better quantify SNRs' ability to produce the observed CRs.

End of slide show

Primary Nuclei Spectra

TIGER Results: 50 days' Data

TIGER Results: 50 days' Data

