Multiwavelength studies of gamma-ray supernova remnants

Aya Bamba
(Aoyama Gakuin University)
0.1. Why are we interested in Suprenova Remnants (SNRs) ?

Most plausible Galactic cosmic ray accelerators!
Distributing heavy elements
Energy input into interstellar medium

Main contributor of the diversity of the universe!

It is still unknown …
- how efficient SNRs can accelerate particles?
- what determines the efficiency of acceleration?
- how accelerated particles become cosmic rays?
0.2. New questions of Supernova Remnants with Fermi

young SNRs have large photon index Γ !!

Cas A: $\Gamma = 2.17$ (Yuan+13)
Tycho: $\Gamma = 2.3$ (Giordano+12)

\rightarrow index of particle $p > 2.0$

\leftarrow a problem of standard theory of CR acc.
which predicts $p = 2.0$

\rightarrow Section 1

~ 10 GeV cut-off in old SNRs !!
They does not have knee E particles !! escaping particles from shocks of SNRs ? (particles can be cosmic rays)

\rightarrow Section 2

To solve these new questions, we need friends !
0.3. How to answer these new questions?

Information from other wavelengths is very important!!
Wide-band emission from SNRs

- Radio
- X-rays
- γ-rays

Energy $E^2 \frac{dF}{dE}$

- MC lines
- Thermal X-rays
- Halpha line
- Sync.
- IC
- π^0
- Accelerated p
- Accelerated e

Information of the background of the acceleration sites

- Thermal X-rays
 - Temperature, density, ionization state of background plasma

- Halpha line
 - Ambient matter density, proper motion

- MC lines
 - Ambient matter density, total mass, ...

Information of the background of the acceleration sites
1. Why $p > 2.0$ in young SNRs?
1.1. What is the problem on $p > 2$ spectrum?

In standard theory:

$$N(E) \propto E^{-p}, \quad p = \frac{r + 2}{r - 1}$$

r: compression ratio

$r \to 4$, $p \to 2$ when Mach number of shock \to infinity

$p = 2.3$ (Fermi Result)

\to Mach number should be ~ 4

\leftrightarrow In reality,

Mach number > 100

Standard theory cannot reproduce soft spectrum in young SNRs!
1.2. How to make soft spectrum?

A. Magnetic field effect (Nonlinear model)
 amplified magnetic field can make apparent compression ratio lower (Bell77, Terasawa+08)

B. Effect of Neutral particles
 H_α observations suggest existence of neutral particles (Ghavamian+00,02)
 charge exchange -> instability of B amplification (Ohira+09)

-> Anyway, amplified B and efficient acceleration is predicted

C. Escaping effect?
 high energy particles are already escaped which makes softer spectrum? (Ohira+09)
 Fast escape even in a few 100 years!
 Knee particles are already made and escaped?
-> fast (efficient) acceleration is predicted
1.3. Observational evidences of amplified magnetic field
sync. emission -> information of magnetic field

- Thin filament
- Small diffusion and gyro radius
- Amplified $B \sim$ a few 100 uG
- Turbulent B up to Bohm limit
- High acceleration efficiency

Bamba+03,05

Year-scale time variation of X-ray emitting knots
Year-scale acceleration and synchrotron loss!
$B \sim mG!$ (a part of remnants)

Uchiyama+07,08

X-ray observations shows amplified and turbulent B
1.4. More information of magnetic field turbulence

Radio polarization of SN1006
SE and NW (no sync. X-rays): very strong polarization (60%)
 -> aligned magnetic field
NE and SW (w. sync. X-rays): rather weak polarization (20%)
 -> turbulent magnetic field

Efficient acceleration makes magnetic field turbulent

Direction of B in NE and SW:
 nearly parallel to the shock normal
 -> efficient acc. in parallel B ??

(Reynoso+13)
1.5. efficient acc. in parallel magnetic field?

B field was originally parallel or became parallel in efficient acceleration sites?

- shock
- density fluctuation
- B amplification and stretching to parallel

3D simulation reproduced parallel B (Inoue+13)

Origin of density fluctuation:
- turbulence of ISM?
- Drury instability in the cosmic-ray modified shock?
- nonlinear feedback of the cosmic-ray streaming instability?
1.6. Acceleration efficiency measurements

From Rankine-Hugoniot relation

Efficient particle acceleration steals energy from the thermal energy of downstream plasma.

We need excellent spectral resolution to measure ion kT in X-ray band.
Injection efficiency measured from ion kT obs. of ejecta knots in SNRs -> Dopp. shift + thermal broad

In the case of Puppus A Oxygen Doppler v ~ 1500 km/s expected O kT ~ 130 keV <-> observed O kT < 30 keV (XMM RGS; Katsuda+13) due to non-equilibrium? or energy injection? (Katsuda+13)
ASTRO-H measurement of acceleration efficiency

ASTRO-H (planned to launch FY2015)
- excellent spectral resolution for extended sources
- wideband spectroscopy from 0.2-600 keV
- imaging capability in 0.2-80 keV like NuSTAR

Resolving a lot of emission lines
-> determine the ratio of kT for several elements

-> measure the E injection

SN1006 NE shell 80ks simulation

O VII Kα (4%)
O VIII Kα (16%)
O VII Kβ (7%)
O VIII Kα

Line width (~1eV)

counts s⁻¹

channel energy (keV)
1.7. Non-thermal X-ray dominated SNRs

RX J1713-3946
(Koyama+97, ...)

Vela Jr.
(Slane+00, ...)

HESS J1731-347
(Bamba+12, ...)

Bright TeV SNRs have no significant thermal X-rays
thermal X-ray luminosity $\sim n_e^2$

\rightarrow background plasma is thinner than average ??

no information on the background of such sources

ASTRO-H will detect emission lines from these SNRs and measure the background condition of such efficient accelerators
2. Escaping particles from SNRs
2.1. Particle escape from SNRs

GeV emission from and vicinity of old SNRs
GeV cut-off of old SNRs

\[\Rightarrow \text{emission from escaping particles!} \]

When particles can escape from acceleration site?
2.2. Excellent example: NE shell of W28

(Nakamura+14)

TeV emission from MC escaping particles?

- Thermal X-ray knots measuring density, ionization timescale, ...
 -> lap time from collision to escape??

ASTRO-H will show us the time scale of escape

OH masar

GeV+TeV from shocked MC softer particle escaping?

colliding w. MC! (OH mesar)
2.3. Not only CO clouds
CO cloud is the most well-known target to see high E particles

RX J1713

CO

HI

no CO cloud but HI gas!
main mass here is HI gas.

gray scale: TeV emission (Aharonian+07)
color: CO and HI distribution (Fukui+12)

We also need HI observations to know TOTAL matter around SNRs
2.4. Peculiar plasma condition in GeV emitting SNRs

Plasma in SNRs is low density!

Ionization degree of SNR plasma slowly approaches to thermal equilibrium

time scale: \(nt \sim 10^{13} \text{ cm}^{-3}\text{s} \)

\(t \sim 3\times10^4 \text{ yrs with } n=1 \text{ cm}^{-3} \)

Plasma of young SNRs should be still ionizing

Suzaku X-ray satellite discovered several SNRs with over-ionized plasma!

Plasma in such SNRs is recombining -> “recombining plasma”

Ionization deg.
Recombining plasma SNRs are GeV SNRs

RP SNR lists:
IC443 (Yamaguchi+09), W49B (Ozawa+09), G359.1-0.5 (Ohnishi+11), W28 (Sawada+12), W44 (Uchida+12), G346.6-0.2 (Yamauchi+13), 3C391 (Sato+14)

GeV source, TeV source

6/7 sources are Gamma-ray emitters!

Possible scenario (Shimizu+14)
SNR exploded in circumstellar matter
-> shock breaks out CSM into ISM
-> higher shock velocity

higher efficient acc. rapid expansion and cooling
-> GeV-TeV gamma-rays ? -> recombining plasma ?

(Shimizu+14)

good tracer of GeV SNRs ??
We need more information on this relation
3. Summary

- Fermi showed us that SNRs are efficient accelerators and distribute particles into the space.

- We need multiwavelength observations to understand what makes such efficient acceleration and escape.

- X-ray and radio observations are good B tracers and showed amplified and turbulent magnetic field.

- X-ray diagnostics with ASTRO-H will measure the acceleration efficiency of particles.

- Radio observations need to know material distribution

- X-ray plasma diagnostics will show us the timescale of escape.