Pair production and γ-ray emission in pulsars: A modern view

Andrey Timokhin
C. Kalapotharakos, A. Harding, D. Kazanas

NASA Goddard Space Flight Center

Fifth International Fermi Symposium
Pulsar: rapidly rotating magnetized neutron star

“Electric lighthouse”
Pulsar: Cosmic Electrical Lighthouse

NB: Pulsars are non-thermal emitters
Plasma creation in the polar cap

Cascades are electromagnetically driven
Limit cycle: series of discharges

No particles extraction from the NS

\[\text{particles} \rightarrow v \]

- electrons
- positrons
- γ-rays

A. Timokhin (GSFC)

Pairs and γ-rays in Pulsars

Fermi Symposium
Free particle extraction from the NS

Particles' momenta: \(p \sim [0, 10] \)

- Electrons
- Positrons
- Photons

"cold" flow - no pairs

\(0 < j/j_{GJ} < 1 \)

"hot" flow - pair production

\(j/j_{GJ} > 1 \)

\(\chi = 0^\circ \)
\(\chi = 30^\circ \)
\(\chi = 60^\circ \)
\(\chi = 90^\circ \)

A. Timokhin (GSFC)
Full cascade

Synchrotron cascade

Curvature Radiation

A. Timokhin (GSFC)

Pairs and γ-rays in Pulsars

Fermi Symposium
Cascade Efficiency

Fraction of particle energy going into synchrotron and curvature radiation

A. Timokhin (GSFC)
Particle acceleration

\[\log \epsilon_{\pm, \text{acc}} \]

\[\rho_c \]

\[\epsilon_{\pm, \text{acc}} \approx 5 \times 10^7 \chi_a^{2/7} \xi_j^{1/7} \rho_{c, 7}^{4/7} P^{-1/7} B_{12}^{-1/7} \]
Multiplicity of polar cap cascade: $\kappa \sim 10^5$

Dependence on ρ_c partially cancels out:

- small $\rho_c \rightarrow$ high splitting efficiency, but low primary particle energy
- large $\rho_c \rightarrow$ low splitting efficiency, but high primary particle energy
Discharge: RS flow

- electrons
- positrons
- γ-rays

- Low heating of NS surface
- Duty cycle: can be as low as $h_{\text{gap}}/R_{\text{NS}} \sim 1/100$ (for Crab)
Discharge: super-GJ SCLF

- electrons
- positrons
- γ-rays

- Low heating of NS surface
- Duty cycle: $\sim 1/\text{few}$

A. Timokhin (GSFC)
PSR J1057-5226: Polar cap emission?

J1057-5226, P=0.1971s
H=14999
d = 0.30 pm 0.00, D = 0.31 pm 0.00
PKS 1.4 GHz
> 0.1 GeV

A. Timokhin (GSFC)

Pairs and γ-rays in Pulsars
Electric field in resistive magnetosphere
uniform high σ

(Kalapotharakos et al. 2014)
Curvature radiation in magnetosphere with non-uniform σ

$$v = \left(\frac{E \times B}{B^2 + E_0^2} + \frac{f B}{B} \right) c$$

$$\frac{d \gamma_L}{dt} = f \frac{q_e c E_\parallel}{m_e c^2} - \frac{2 q_e^2 \gamma_L^4}{3 R_{CR}^2 m_e c}$$

(Kalapotharakos et al. 2014)
γ-ray Emitting Regions

(Kalapotharakos et al. 2014)
Peak Separation (Δ) vs Radio Lag (δ)

(Kalapotharakos et al. 2014)
Conclusions

• Particles can be accelerated faster and at lower altitudes
• γ-ray emission from polar caps is at lower energies ($\sim 10 - 100$ MeV)
• Maximum multiplicity of polar cap cascades $\kappa \sim 10^5$
 • Maximum multiplicity is not sensitive to pulsar parameters
 • Plasma distribution is non-uniform
 • Inclinations angle should be very important factor determining the overall pulsar pair multiplicity

• The bulk of γ-ray emission seems to come from the current sheet region outside the light cylinder