The VERITAS Dark Matter Program

Benjamin Zitzer
High Energy Physics Division (HEP)
Argonne National Laboratory

Fermi Symposium 2014
Nagoya, Japan – October 22nd 2014
VERITAS Introduction

- Very Energetic Radiation Imaging Telescope Array System
- Employs ~100 scientists in five countries
- Full Array Operations since fall 2007
- Four 12m Davies-Cotton Telescopes in Southern AZ
- Upgrades:
 - Move of T1 in Summer 2009
 - Trigger Upgrade in November 2011
 - Camera Upgrade in Summer 2012

- Support From:
 - US DOE
 - US NSF
 - Smithsonian Inst.
 - STFC (UK)
 - SFI (Ireland)
 - NSERC (Canada)

- Performance:
 - Energy Range: 0.85 – 30 TeV (Post-Upgrade)
 - Energy Res: \(\Delta E/E \sim 0.2 \)
 - Angular Res: \(\sim 0.1 \) deg (68%)
 - Angular Accuracy: 50 arcsec
 - FOV: 3.5 deg
Gamma Rays from Dark Matter

Dark Matter is well described theoretically by extensions of the Standard Model of Particle physics (Supersymmetry, Kaluza-Klein) by a Weakly Interacting Massive Particle (WIMP) in the mass range of ~10 GeV – 10 TeV.

- WIMP annihilation production \(\gamma \)-rays
- Gamma-ray line from direct annihilation (higher order process)
- Gamma-ray continuum from hadronization
- Enhanced near \(M_{WIMP} \) from internal brems
- DM gamma-ray flux:

\[
\frac{dF(E, \hat{n})}{dE d\Omega} = \int d\ell \frac{\ell^2}{4\pi} r(\ell \hat{n}) \frac{dN_\gamma(E)}{dE} \frac{1}{4\pi \ell^2}
\]

\[
\left< \sigma v \right> \frac{dN_\gamma(E)}{dE} \frac{8\pi M^2}{dE} = \int d\ell \rho^2(\ell \hat{n})
\]

(Nearly) All Roads lead to Gamma Rays!

Particle Physics Astrophysical Factor
VERITAS Dark Matter Targets

Galactic Center (GC):
- Close by
- Astrophysical backgrounds

Dwarf Spherioidal Galaxies (DSphs):
- Low Astrophysical Backgrounds
- High M/L
- Low Flux

Galaxy Clusters:
- Large DM Content
- Large Distance
- Potentially Extended
- Astrophysical backgrounds

Unassociated Fermi Sources
- Potentially DM Sub-halos?
DM Sub-Halo Candidates

- N-Body simulations predict the existence of DM sub-halos
 - Potentially close enough for VHE detection
 - Too small to attract Baryonic matter for star formation
 - Invisible at other wavelengths
- Selection Criteria for VERITAS Observations:
 - Lies outside the Galactic Plane
 - No variability
 - No spectral curvature
 - Detection feasible by extrapolation of Fermi-LAT spectra to VHE
 - No counterparts at other wavelengths
DM Sub-Halo Candidates

2FGL J0312.8+2013

- Exposure Time: 9.1 hrs
- Excess: -25.7 ± 16.9
- Significance: -1.5σ
- Energy Threshold: 220 GeV
- Flux UL (99% CL): $< 1.78 \times 10^{-12} \text{ cm}^{-2}\text{s}^{-1}$
- $< 0.9\%$ Crab Nebula

2FGL J0746.0-0222

- Exposure Time: 9.1 hrs
- Excess: -14.5 ± 15.8
- Significance: -0.9σ
- Energy Threshold: 320 GeV
- Flux UL (99% CL): $< 1.23 \times 10^{-12} \text{ cm}^{-2}\text{s}^{-1}$
- $< 1.1\%$ Crab Nebula
Galaxy Clusters

- 21 hrs on Coma Galaxy Cluster, low Zn observations
- No Detection with VERITAS or Fermi-LAT
- $\langle \sigma v \rangle^{95\% CL} \sim O(10^{-21}) \text{ cm}^{-3} \text{s}^{-1}$
- Archival Galaxy Cluster search currently underway
- Search for clusters that have overlapped in same FOV as previous VERITAS observations
- Cluster list from ROSAT and SDSS

![X-ray contours](image1.png)

![Radio contours](image2.png)

![Graph](image3.png)
Sgr A* Observation Strategy

- 18σ detection of SgrA*, 46 hours observation
- Large Zenith Observations → ~2 TeV threshold
- Increased CR density in GC, diffuse gamma-ray emission, SNR & PWNe in GC
- Two different ON/OFF pointings
 - Define signal/bg regions in ON/OFF maps, excluding SgrA* and other gamma-ray sources
 - Use OFF map to determine energy-dependent acceptance
DM Constraints from the Galactic Center

Preliminary Estimate
For 80 hour exposure

Sommerfeld-Boosted Cross Section

Natural Cross Section

$\langle \sigma v \rangle$ (cm3 sec$^{-1}$)

M_x (GeV)
DM Constraints from DSphs

- Already published shown here:
 - 15 hours on four DSphs
 - $\langle \sigma v \rangle \sim 10^{-23} \, \text{cm}^3\text{s}^{-1}$ at min M_x
 - 48 hours Segue 1
 - $\langle \sigma v \rangle \sim 10^{-24} \, \text{cm}^3\text{s}^{-1}$ at min M_x

Equation for cross-section:

$$<\sigma v>^{95\%CL} = \frac{8\pi}{J(\Delta \Omega)} \frac{N_\gamma^{95\%CL} m_X^2}{t_{obs} \int_0^{m_X} A_{eff}(E) \frac{dN_\gamma}{dE} dE}$$

- $N_\gamma^{95\%}$: counts UL, calculated from Rolke
- $A_{eff}(E)$: Effective area
- $J(\Delta \Omega)$: line of sight integral of DM density squared
- t_{obs}: Observation time on target
- dN_γ/dE: Single annihilation spectra for a WIMP
Segue 1 Results

- CR electron excess seen by Pamela/Fermi/HESS could be explained by a Sommerfeld enhancement
 - Arises when two DM particles interact though a attractive potential, mediated by a third particle.
- Velocity dependent, modifying cross-section
- Constraints on models of Lattanzi & Silk (2009), bottom left, and Arkani-Hamed et al (2009), bottom right
DSph Results of other IACTs

MAGIC: 160 hours on Segue 1
Full Maximum Likelihood method
ArXiv: 1312.1535

HESS: 141 hours combined on five dSphs
90 hours on Sagittarius
Maximum Likelihood Method
Deep exposure on Galactic Center as well
arXiv: 1410.2589
Deep Exposure Systematics

- 92 hours of data quality selection for Segue 1 from period of 2009 to 2013
 - Deepest VERITAS Observation \textit{without} seeing a strong gamma-ray signal

- Softer cuts used, improves statistics, but increases systematics
 - Wider significance distributions of backgrounds (Gaussian sigma > 1.0)

- Gradient correlating with Zenith angle of observations (above, right)
 - Fit of Non/Acc (Flatness) – Zenith curve used to re-weight acceptance
Deep Exposure Systematics (cont.)

- Bright stars are problematic for IACT data
- Suppressed pixels in cameras for analysis
 - Holes in skymaps
- Segue 1 has bright star (Eta Leonis, 3.8 BMag)
 - located 0.68 deg away
- New HFit algorithm - 2D Gaussian fit of all pixels in camera, no cleaning
- Tested on independent data set - RBG J1058
DSph Results after Systematic corrections:

<table>
<thead>
<tr>
<th>DSph</th>
<th>Exposure (hrs)</th>
<th>(\log_{10} J) (GeV²cm⁻⁵)</th>
<th>Significance ((\sigma))</th>
<th>Eth (GeV)</th>
<th>Flux UL, 95% CL (> 300 GeV), Index = -2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segue 1</td>
<td>91.9</td>
<td>19.0</td>
<td>0.7</td>
<td>150</td>
<td>(4.2 \times 10^{-9}) cm⁻²s⁻¹, (\sim 0.3 %) CU</td>
</tr>
<tr>
<td>Ursa Minor</td>
<td>59.7</td>
<td>18.9</td>
<td>-0.1</td>
<td>290</td>
<td>(3.4 \times 10^{-9}) cm⁻²s⁻¹, (\sim 0.2 %) CU</td>
</tr>
<tr>
<td>Draco</td>
<td>49.9</td>
<td>18.4</td>
<td>-1.0</td>
<td>220</td>
<td>(3.4 \times 10^{-9}) cm⁻²s⁻¹, (\sim 0.2 %) CU</td>
</tr>
<tr>
<td>Boötes 1</td>
<td>14.3</td>
<td>17.9</td>
<td>-1.0</td>
<td>170</td>
<td>(5.0 \times 10^{-9}) cm⁻²s⁻¹, (\sim 0.3 %) CU</td>
</tr>
<tr>
<td>Wilman 1</td>
<td>13.7</td>
<td>18.9</td>
<td>-0.6</td>
<td>180</td>
<td>(1.1 \times 10^{-8}) cm⁻²s⁻¹, (\sim 0.7 %) CU</td>
</tr>
</tbody>
</table>
Future Work: Combined DM Analysis

- VERITAS DM results shown previously do not use individual photon information, one limit per source

- Event Weighting method used for Fermi-LAT data of DSphs (Geringer-Sameth et al. arXiv:1410.2242)
 - Authors working with VERITAS Collaboration
 - Each event is assigned a weight as a function of energy and position, increased sensitivity
 - Events closer to target with lower energy more likely to be from DM annihilation
 - Sum of weights is test statistic to test hypothesis of events existing due to DM annihilation with given M and $<\sigma v>$
 - Able to combine multiple sources and instruments into a single DM limit
 - Very close to having new DM physics results ready (~1 month)
 - J factors to be used from Geringer-Sameth et al. [arXiv:1408.0002]

arXiv:1408.0002
Concluding Remarks

VERITAS dark matter program is ongoing:
- Observations of dSphs, GC, Fermi UNIDs, galaxy clusters
- No detections of DM (yet!)
- Gaining better understanding of systematics, utilizing new techniques
- Segue 1 Flux UL reduced with longer exposure: \(~0.5\%\) Crab \(\rightarrow\) \(~0.3\%\) Crab

Future Plans:
- Continuing observations of dark matter targets
- Significant portion of VERITAS observing time (~170 hrs/year)
- Analysis of dSphs for combined analysis paper ongoing (~230 hours!)
 - Gamma-ray analysis/Flux UL complete
 - Dark Matter physics limits soon, including line search
- Galactic center
 - SgrA* detection paper complete
 - Work on DM limits of halo ongoing
- Fermi UNIDs
 - More data to be taken, search for more feasible Fermi UNIDs
- Galaxy Clusters
 - Archival work underway, work on extended source systematics