VERITAS Observations of Very High Energy Blazars and Potential for Cosmological Insight

Amy Furniss for the VERITAS Collaboration

5th International Fermi Symposium October 2014 Nagoya, Japan

VERITAS

Very High Energy $\gamma_E > 100 \text{ GeV}$

Imaging Atmospheric Cherenkov Telescopes

•~70 GeV - 30 TeV

- 15–20% energy resolution
- 0.1° angular resolution
- Detect 1% Crab in < 30 hrs
- Upgrade complete: trigger (2011) and camera (2012)

Using the VHE Blazar Catalog

- Particle Physics and Fundamental Laws
 - Particle processes at the highest energies
 - Lorentz invariance
 - Origin of ultra high energy cosmic rays
- Cosmology
 - Extragalactic background light density
 - Magnitude of the intergalactic magnetic field
- Black holes
 - Supermassive black holes
 - Jet physics
 - Evolution
 - Environment

Extragalactic Background Light

The sum of the emitted and reprocessed starlight since the beginning of the Universe

Difficult to observe directly due to strong foreground sources....

Observable Effect of VHE/ EBL Photon-Photon Pair $F_{obs} = F_{int} e^{-\tau(z,E)}$ **Production**

Image courtesy of

The Gamma-ray Horizon

- EBL opacity curves (Dominguez et al. 2011)
- PKS 1424+240 probes an opacity of τ >5
- 3C 66A and PG 1553+113 also pushing up in opacity
- S3 0218+35 @ z=0.944 detected by MAGIC between 100-200 GeV probes < τ ~2.5

PKS 1424+240

- •Blazar detected < 750 GeV @ z>0.6035
- Relative high state in 2009, low state in 2013
- •Flux is lower in 2013 by about a factor of 2
- Both absorption-corrected spectra show low-significance indication of hardening at high energy
- Inconclusive whether the high energy (>310 GeV flux) is variable, (5.6±3.6) vs. (3.6±1.8) x 10⁻⁹ m⁻² s⁻¹
- Lower state in 2014 as compared to 2013 - analysis ongoing

PG 1553+113

- •Blazar detected between 160 and 560 GeV
- •0.395 $\leq z < \sim$ 0.58 from far UV observations
- •80 Hours of data from May 2010 to June 2012 show steady emission
- •7% Crab
- Place limits on the EBL or z assuming intrinsic emission does not show spectral hardening

3C 66A

- •Blazar detected to 600 GeV
- •0.33 < *z* <0.41 from far UV observations (HST)
- •Flaring period in 2008 (3 nights, 6 hours of observations)
- •VERITAS data from 2007–2013 (65 hours)
- •Spectra absorption-corrected according to Gilmore et al., 2009 EBL model
- •Continuing observations (20+ hours per year)

Possible Mechanisms for Spectral Hardening

- Assumed EBL-model density, evolution or spectral shape is incorrect
- Lorentz invariance violation
- Gamma rays oscillate into axion-like particles
- Observation of secondary emission from extragalactic cosmic ray propagation

Commonly Applied Assumption Intrinsic VHE photons+EBL

Cosmic-ray Contribution?

Take-home Message

- The very-high-energy γ-ray emission from extragalactic sources can be affected by
 - Absorption by the extragalactic background light details depend on H₀ and star-formation history
 - Secondary γ-ray production from UHECR along line of sight

- Its a challenge to separate from intrinsic source properties from the possible secondary contributions
 - Progress can be made through use of multiple sources, improved instrument sensitivity, and deep observations
 - VERITAS blazar observation plan concentrates on sources with potential to add to this study

UHECR from PKS 1424+240?

•Assumptions:

- •Secondary gamma rays produced closer to Earth in cascades of UHECR
- •IGMF of order 10⁻¹⁵ G
- Hard secondary component should not show rapid variability

